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Abstract

Many economic theories predict the existence of cohort or vintage effects: that workers,
firms, or capital ‘born’ in a particular year have fixed characteristics that shape their outcomes
throughout their lifecycle. The usual approach models cohort, age, and year effects as ad-
ditively separable. This paper considers identification and inference in a nonseparable model
which allows for unrestricted interactions between fixed features of cohorts and external factors
which vary by age and year. I define Local Average Cohort Effects as the difference between
the average outcomes for a cohort and what the counterfactual average outcomes of the cohort
born one year earlier would have been had they experienced the same external age-by-year
factors. I show that the estimator proposed by McKenzie (2006) for the additively-separable
model identifies differences in Local Average Cohort Effects under the assumption that shocks
to neighboring ages in neighboring years are exchangeable (as-if-randomly-assigned). This
assumption also suggests a permutation-based test which provides inference with exact size in
expectation. I apply the approach to show additional evidence of the (relative) decline in health
and human capital of Americans born after 1947 documented in Reynolds (2024).
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and Marco Francesconi. Portions of this work were previously included in the working paper “The Broad Decline of
Health and Human Capital” (2023).



1. Introduction
Many economic theories predict the existence of cohort or vintage effects: that workers,

firms, and capital ‘born’ in a given year have fixed characteristics that will shape their productivity
(or other outcomes) throughout their lifecycle. Sometimes these cohort effects are of independent
interest (eg. Hall, 1968; Card and Lemieux, 2001; Porzio et al., 2022). Other times age effects,
such as lifecycle wage or consumption profiles, are the object of interest and cohort effects along
with year effects are nuisance terms.1

The usual approach models cohort, age, and year effects as additively separable. A well-
known identification problem arises because of the collinearity of cohort, age, and year (Hall,
1971). The linear trends in each of these effects cannot all be identified, but second-differences
in each effect can, and therefore one additional linear restriction can pin down the full set of ef-
fects (Hall, 1971; Deaton, 1997; McKenzie, 2006). Perhaps less well appreciated is that allowing
even basic parametric interactions between any of the two dimensions — such as allowing the
impact of age to vary by cohort — introduces additional collinearity and exacerbates the iden-
tification problem (Heckman and Robb, 1985). To my knowledge, no work has considered the
implications for identification and inference of introducing more general forms of heterogeneity
and non-separability.

This paper introduces to the cohort effect setting the type of heterogeneity commonly con-
sidered for treatment effects. I specify a nonseperable model which allows for unrestricted inter-
actions between fixed features of cohorts and external factors which vary by age and year. The
model highlights that cohort effects answer counterfactual questions about what a given cohort
would have earned had they faced different external factors. Identifying these generalized cohort
effects is therefore akin to the “Fundamental Problem of Causal Inference” (Holland, 1986) in that
it requires assumptions which allow identification of unobserved potential outcomes.

I define Local Cohort Effects as the difference between the observed outcomes for a cohort,
C, in a given age and year, and what the outcomes of the cohort born one year earlier would have
been if they had experienced the same external age-by-year factors as cohort C. I call the average
of these across years Local Average Cohort Effects. As an example, consider testing the claim of
my earlier paper Reynolds (2024) that there has been a decline in the health and human capital
of Americans born after 1947, relative to the prior cohort trend. A relevant Local Average Cohort
Effect in this setting is: the counterfactual difference in wages between what the 1948 cohort would
have earned had they faced the set of external age-by-year factors that the 1947 cohort faced and
what the 1947 did earn. If this effect is negative it implies that the 1948 cohort had more human
capital than the 1947 cohort, at least along the dimensions which were relevant in the labor market

1See for example Mincer (1974); Heckman et al. (1998); Lagakos et al. (2018); Gourinchas and Parker (2002)
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conditions which the 1947 cohort experienced. This definition therefore takes seriously the idea
that the human capital of a cohort (or the fixed features of a particular vintage of capital) may be
multidimensional and therefore it’s impact may differ depending on the external factors prevailing
in a given year for those of a given age.

I show that the estimator proposed by McKenzie (2006) for the additively-separable model
identifies the Difference in Local Average Cohort Effects under the assumption that shocks to
neighboring ages in neighboring years are exchangeable. In the context of the above example, this
means one can identify the difference between i) the counterfactual difference in wages between
what the 1948 cohort would have earned, had they faced the external factors the 1947 cohort faced,
and what the 1947 cohort did earn, and ii) the counterfactual difference in wages between what the
1947 cohort would have earned, had they faced the external factors the 1946 cohort faced, and what
the 1946 cohort did earn. If this is negative it implies that the change in human capital between the
1947 and 1948 cohort is smaller than that between the 1946 and 1947 cohort, again at least along
the dimensions which were relevant in the particular “local” labor market conditions specified.

The assumption that shocks to neighboring ages in neighboring years are exchangeable de-
serves further comment. As an example, it would implies that the pair of external shocks affecting
the wages of 30 year olds in 1970 and 1971 and the pair of external shocks hitting 31 year olds in
1970 and 1971 could be permuted or “swapped” without changing the joint distribution of any of
the external shocks. It is “as-if-randomly-assigned” whether the set of shocks in 1970 and 1971 hit
either 30 or 31 year olds. This allows for unrestricted dependence in the shocks over time hitting a
given age, as well as non-random shocks to larger groups of ages in a given year. What is assumed
random is the very local difference in external shocks impacting those one year apart in age.

This assumption also suggests a permutation-based test which provides inference with exact
size in expectation. For example one can test whether the Difference in Local Average Cohort
Effects described above is negative.

I apply this approach to test whether there has been a decline in health and human capital
of Americans born after 1947, relative to the trend for prior cohorts. I fail to reject the null of a
relative decline in health and human capital for all outcomes considered in Reynolds (2024): men’s
wages, maternal health as proxied by the birthweight of their infants, and men’s and women’s log
mortality.

2. Literature review
The methodological literature on the “age-period-cohort” identification problem is large. The

basic finding that the additively-separable age-period-cohort model is not identified seems to have
been rediscovered a number of times. Perhaps the earliest example can be found in Hall (1968),
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Rodgers (1982) is a prominent example in sociology, and Deaton (1997) provides a useful text-
book account. Heckman and Robb (1985) highlight that adding higher order terms exacerbates the
identification problem. McKenzie (2006) suggest second difference estimators for the second dif-
ference in age, period, and cohort effects within the additively-separable model. Schulhofer-Wohl
(2018) shows how to use these second difference estimators as an input to structural estimation.

These models have been used by economists to isolate “cohort effects” in a range of settings
with important implications. For example, “vintage” effects in capital are important ingredients
for growth accounting (Hall, 1968; Jorgenson, 1996), cohort effects in human capital have been
studied in relation to the college-high-school wage gap (Card and Lemieux, 2001) and structural
transformation (Porzio et al., 2022), and recently Sorkin and Wallskog (2023) estimates the con-
tribution of firm cohort effects (related to year of firm entry) on inequality.

Given their wide use it is somewhat surprising that age-period-cohort models have escaped the
wave of methodological contributions introducing nonseparablity and heterogeneity to common
econometrics settings. The common approach in the treatment effect literature, exemplified by
Imbens and Angrist (1994), is to introduce unrestricted treatment effect heterogeneity and ask if
there are reasonable assumptions such that traditional estimators deliver an interpretable average
causal effect of some kind, eg. the Local Average Treatment Effect. For example, De Chaisemartin
and d’Haultfoeuille (2020) find that when treatment effects are allowed to be heterogeneous then
the traditional estimator from two-way fixed-effects models with a treatment dummy does not
deliver an interpretable average causal effect. They therefore suggest a new estimator. To my
knowledge, no analogous heterogeneity has been studied in the cohort effects setting.

3. Model and definitions
This section presents a conceptual model which generalizes the idea of “cohort effects” and

suggests a link to counterfactuals and potential outcomes. I then define “Local Cohort Effects” and
“Local Average Cohort Effects”, and the “Difference in Local Average Cohort Effects.”

A. Model
Consider the following model:

Yapc = g(θc, ϵap) (1)

where Yapc denotes an outcome for “units” who are age a, in the year or “period” p, and
who are members of the cohort c, ie. they were born in year c. The outcome is a function of: i)
θc, underlying, fixed features of the cohort and ii) ϵap external factors in the year p which affect
individuals of the given age, a. There is no restriction (yet) on the structural function g(·, ·) or on
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the dimensionality of θc or ϵap. Treat the cohort factors θc as fixed and the age-by-year factors, ϵap,
are random variables.

A leading example is the case where units are individuals and the outcome is their average
or median earnings of workers born in a given year, at a given age, and in a particular year. In
this case, conceptually, θc represents the underlying, fixed differences between individuals born in
different years which impact their outcomes. It reflects broadly the health, human capital, cognitive
ability and “skills” of the cohort. θc can be multidimensional to represent both the potentially
multidimensional nature of health and “skill” (eg. Heckman, 2007), and to represent differences
in the distribution of skills within cohorts. I do not specify explicitly when or how these cohort
differences develop, just that they originate before the age one begins measuring the outcome.
There is a long history in social science as well as neuroscience and human biology of studying
differences between cohorts and of the suggestion that they are likely to differ due to different
experiences at “critical periods” in their life.2 For example, the cohort differences could date to
labor market entry, schooling age, infancy, or in utero. The model treats cohort effects as fixed
from the age at which the outcomes began to be measured, abstracting from investment in skills
after that age and scarring effects in adulthood. In contrast, ϵap represents the external factors such
as technology or labor demand which will impact the outcome of a cohort who is age a in year p.
The interaction between θc and ϵap is unrestricted, so the model allows for example for a situation
where the labor market for 30 year old workers would be a good match for the skills of one cohort
but a poor match for those of another cohort.

The model can apply to settings with many other outcome variables or where the units are
not individuals. For example, it could be applied to generalize the model in Sorkin and Wallskog
(2023) which studies the impact of firms on inequality allowing firms which enter in a particular
year to have different “cohort effects.” Or it could be applied to the setting in Hall (1968) and a
large subsequent literature (reviewed in Jorgenson, 1996) which studies whether capital built in a
particular year (of a particular “vintage”) has different productivity.

In the context of this model, the concept of “cohort effects” can be generalized and linked to
the idea of counterfactuals and potential outcomes.3 For example, a natural way to summarize a
decline in the human capital of cohorts born between 1947 and 1960 would be to ask: had both
cohorts faced the set of external age-by-year factors actually experienced by the 1947 cohort how
would their earnings have differed? This is fundamentally a counterfactual question and involves
the comparison of the observed outcomes for the 1947 cohort to a set of potential outcomes for the
1960 cohort which will never be observed. In particular, the outcomes Yapc will only be observed

2See for example Ryder (1965); Easterlin (1987); Fogel and Costa (1997), and Cunha et al. (2006) and the citations
therein.

3See for example Rubin (1974); Holland (1986); Heckman (2010).
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for cohorts, ages, and periods such that c = p − a. We can define the structural function g(·, ·)
however for all pairs of θc and ϵap — defining “potential outcomes” which a cohort would have had
if they had been exposed to different external factors. Identifying these generalized cohort effects
therefore is akin to the “Fundamental Problem of Causal Inference” (Holland, 1986).

I will consider identification and inference in a setting where the cohort factors θc are fixed
and uncertainty comes from the external factors ϵap. So all expectations below are taken with
respect to the unspecified distribution of the set of ϵap.

Define Local Cohort Effects as the expected difference between the observed outcomes for
a cohort, c, in a given age and year, and what the expected outcomes of the cohort born one year
earlier would have been if they had experienced the same external age-by-year factors as cohort c:

ϕc,ap = E [g(θc, ϵap)− g(θc−1, ϵap)]

Note that while g(θc, ϵap) is observed, g(θc−1, ϵap) is an unobserved potential outcome.

Then define the Local Average Cohort Effect as the expected average Local Cohort Effects
across a set of years P:

Φc,P = E
[

1
P

∑
p∈P;a=p−c ϕc,ap

]
As an example, consider testing the claim of my earlier paper Reynolds (2024) that there

has been a decline in the health and human capital of Americans born after 1947, relative to the
prior cohort trend. A relevant Local Average Cohort Effect in this setting is: the counterfactual
difference in wages between what the 1948 cohort would have earned had they faced the set of
external age-by-year factors that the 1947 cohort faced and what the 1947 did earn. If this effect
is negative it implies that the 1948 cohort had more human capital than the 1947 cohort, at least
along the dimensions which were relevant in the labor market conditions which the 1947 cohort
experienced. This definition therefore takes seriously the idea that the human capital of a cohort
(or the fixed features of a particular vintage of capital) may be multidimensional and therefore
it’s impact may differ depending on the external factors prevailing in specific years for those of a
specific ages. This is the sense in which the cohort effects are “local” to particular ages and years.

Then define the Difference in Local Average Cohort Effects as the expected difference in
local cohort effects between cohort c+ 1 and cohort c across a set of years P:

Ψc,P = E
[

1
P

∑
p∈P;a=p−c ϕc+1,a−1,p − ϕc,ap

]
= E

[
1
P

∑
p∈P;a=p−c (g(θc+1, ϵa−1,p)− g(θc, ϵa−1,p))− (g(θc, ϵap)− g(θc−1, ϵap))

]
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This can be thought of as a non-parametric generalization of the second-difference in cohort effects
considered in McKenzie (2006). Consider the model with earnings by age-year-cohort as the
outcome. ϕc+1,ap−ϕc,ap will be negative if the counterfactual difference in earnings between what
cohort c + 1 would have earned and what c did earn, is larger than the difference between what
cohort c earned and the counterfactual earnings of cohort c− 1. If for a given c, one knew that for
many years and ages that ϕc+1,ap − ϕc,ap is on average large and negative — we might conclude
that there is a “trend break” or “kink” in human capital at cohort c in the sense that the difference
in counterfactual earnings is on average much smaller between cohort c and cohort c+ 1 than it is
between cohort c and cohort c− 1.

For example, if there is a sharp break in the cross cohort trend in human capital at the 1947
cohort, such that the change in human capital between the 1947 and 1948 cohort is much smaller
than change in human capital between 1946 and 1947 cohort, as I argue in (Reynolds, 2024). Then
Ψ1947,P with earnings as the outcome should be large and negative, because:

Ψ1947,P = E
[

1
P

∑
p∈P;a=p−c (g(θ1948, ϵa−1,p)− g(θ1947, ϵa−1,p))− (g(θ1947, ϵap)− g(θ1946, ϵap))

]

B. Unbiased estimator under exchangeabililty of age-by-year shocks
This section shows that the estimator proposed by McKenzie (2006) for the additively-separable

model is an unbiased estimator of Differences in Local Average Cohort Effects under the assump-
tion that age-by-year shocks are exchangeable for neighboring ages.

The key assumption for identification is that the age-by-year shocks in neighboring years
hitting an age a are “exchangeable” with the age-by-year shocks in the same years hitting age
a− 1. That is that, for all a, p:

F ({ϵap, ϵa,p−1}, {ϵa−1,p, ϵa−1,p−1}, ϵ) = F ({ϵa−1,p, ϵa−1,p−1}, {ϵap, ϵa,p−1}, ϵ)

where ϵ denotes the vector of all other ϵa′,p′ not listed, and F () denotes the joint probability
distribution of the entire sequence of shocks. The pairs of shocks are exchangeable in the sense that
the joint distribution of all of the age-by-year shocks in neighboring ages and years are invariant
to permuting the “label” of ages on the shocks.4

For example, it means that it is “as-if-randomly-assigned” whether the set of shocks in neigh-
boring years hits 30-year-olds or 31-year-olds. This assumption is somewhat unusual but has a
number of appealing properties. It allows for unrestricted dependence in the shocks over time hit-
ting a given age a. It also allows for there to be non-random shocks to a larger groups of ages
in a given year — for example the effect of the supply of workers of nearby ages on wages in

4For discussion of exchangeability see for example Draper et al. (1993); Bernardo (1996). See Brock and Durlauf
(2001) for an economic application.
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Card and Lemieux (2001). What is assumed random is the very-local difference in external factors
impacting those one year apart in age.

Under this assumption, one can show easily that the second difference estimator suggested
in McKenzie (2006) is an unbiased estimator of the Difference in Local Average Cohort Effects.
Begin by defining the first-difference in outcomes of those who are the same age, in neighboring
years: ∆pYapc = Yapc − Ya,p−1,c−1. And define the second difference in outcomes, which takes the
difference in the above between neighboring ages:

∆a∆pYapc = ∆pYa−1,p,c+1 −∆pYapc = (Ya−1,p,c+1 − Ya−1,p−1,c)− (Yapc − Ya,p−1,c−1)

The idea is that the second difference in outcomes, can be written as the sum of two terms.
The first term is similar to the Difference in Local Cohort Effects, but for the particular observed
draw of the age-by-year shocks. The second term is the difference in age-by-year shocks for that
year:

∆a∆pYapc = [g(θc+1, ϵa−1,p)− g(θc, ϵa−1,p)]− [g(θc, ϵa,p−1)− g(θc−1, ϵa,p−1)]︸ ︷︷ ︸
∼diff in local cohort effects

+ (g(θc, ϵa−1,p)− g(θc, ϵa−1,p−1)− (g(θc, ϵa,p)− g(θc, ϵa,p−1)︸ ︷︷ ︸
diff in age-by-year shocks

A potential estimator is the average of these second-differenced outcomes across a set of P
years P . This can be written as two terms as well. The first term is similar to the Difference in
Local Average Cohort Effects, but for the particular observed draw of the age-by-year shocks. The
second term is plus the average difference in age-by-year shocks:

Ψ̂c ≡
1

P

∑
p∈P

∆a∆pYapc =
1

P

∑
p∈P

[(g(θc+1, ϵa−1,p)− g(θc, ϵa−1,p))− (g(θc, ϵa,p−1)− g(θc−1, ϵa,p−1))]︸ ︷︷ ︸
∼diff in Local Average Cohort Effects

+
1

P

∑
p∈P

[(g(θc, ϵa−1,p)− g(θc, ϵa−1,p−1)− (g(θc, ϵa,p)− g(θc, ϵa,p−1))]︸ ︷︷ ︸
avg. diff in age-by-year shocks

(2)

Then under the assumption of exchangeability the average difference in age-by-year shocks
goes to zero in expectation, and the estimator is equal in expectation to just the Difference in Local
Average Cohort Effects:5

5Recall that only the age-by-year shocks are random variables, so expectation is taken with respect to their distri-
bution.
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E
[
Ψ̂c

]
= E

[
1

P

∑
p∈P

[(g(θc+1, ϵa−1,p)− g(θc, ϵa−1,p))− (g(θc, ϵa,p−1)− g(θc−1, ϵa,p−1))]

]
= Ψc

C. Permutation-based inference
The exchangeability assumption allows for a simple permutation test in the spirit of Fischer’s

exact test.6

The test will have correct size for a “sharp null” hypothesis that for all possible draws of the
age-by-year shocks, a term like the difference in Local Cohort Effects is equal to zero in all years.
Denote this hypothesis H0,A. It can be written as:

1
P

∑
p∈P;a=p−c (g(θc+1, ϵa−1,p)− g(θc, ϵa−1,p))− (g(θc, ϵap)− g(θc−1, ϵap)) = 0

for all possible draws ϵap and all a, p s.t. c = p− a

Interestingly, the test will also have correct size for an, admittedly somewhat unusual, weak(er)
null hypothesis that for all possible draws of the age-by-year shocks, a term like the Difference in
Local Average Cohort Effects across all years is equal to zero. Denote this hypothesis H0,B. It can
be written as:

1
P

∑
p∈P;a=p−c (g(θc+1, ϵa−1,p)− g(θc, ϵa−1,p))− (g(θc, ϵap)− g(θc−1, ϵap)) = 0

for all possible draws ϵap and all a, p s.t. c = p− a

Under the stated conditions, the test will not in general have correct size for the more general
null that the expected value (population mean) of the average second-difference in local cohort
effects is equal to zero.7

I take the sequence of observed first difference in outcomes for the neighboring cohorts c̃+1

and c̃ as data: {∆pYa−1,p,c̃+1,∆
pYa,p,c̃}p∈P,a=p−c̃. Consider then all possible sequences which

adjust this sequence by permuting any number of the neighboring first differences, and keeping the
other first differences in the order observed. Ideally I would use this entire set of possible sequences
to conduct the permutation test. As a computationally feasible approximation, I instead make K
repeated draws where in each draw: for each pair of neighboring first differences I randomly either
permute them or keep them as observed.

6See for example Ernst (2004), Imbens and Rubin (2015), and Young (2019).
7It seems possible that one could impose mixing conditions on the age-by-year shocks such that a Central Limit

Theorem holds on the second-differenced outcomes under the null. Then, along the lines of Janssen (1997); Chung
and Romano (2013); Young (2024) potentially a permutation test based on a studentized test statistic would have
asymptotically correct size for the general null as the number of periods tends to infinity.
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I will use as a test statistic the average second difference estimator, Ψ̂c, defined in Section 7.
Denote this test statistic defined based on the observed data as Ψ̂c̃. Define the corresponding test
statistics calculated from the permuted data from each draw 1 to K as Ψ̂(1), Ψ̂(2) ... Ψ̂(K).

Under either null hypothesisH0,A orH0,B the first term in Equation 2, representing the second
difference in local average cohort effects, is zero and the test statistic is therefore equal to:

Ψ̂c =
1

P

∑
p∈P

[(g(θc, ϵa−1,p)− g(θc, ϵa−1,p−1)− (g(θc, ϵa,p)− g(θc, ϵa,p−1))]

It then directly follows from the assumption of pairwise exchangeability that the sequence of
test statistics calculated on the observed data and based on the K draws, {Ψ̂c̃, Ψ̂

(1), Ψ̂(2) ... Ψ̂(K)},
is a sequence of exchangeable random variables.

Therefore any ordering of the sequence from smallest to largest is equally likely. Assuming
the test statistic is continuous and therefore one can ignore ties, then the probability that Ψ̂c̃ is
greater than m of the permuted test statistics is simply m+1

K+1
.8 One can therefore calculate a 1-sided

permutation p-value as:

p̂c̃,1 =
1 +

∑K
k=1 1

(
Ψc̃ ≥ Ψ̂(k)

)
K + 1

And such a p-value has correct size:

P (p̂c̃,1 ≥ α) = P

1 +
∑K

k=1 1

(
Ψc̃ ≥ Ψ̂(k)

)
K + 1

≥ α


= P

(
K∑
k=1

1

(
Ψc̃ ≥ Ψ̂(k)

)
≥ α(K + 1)− 1

)
= α

In practice I use the following two-sided p-value:

p̂c̃ = 2 ·min

1 +
∑K

k=1 1

(
Ψc̃ ≥ Ψ̂(k)

)
K + 1

,
1 +

∑K
k=1 1

(
Ψc̃ ≤ Ψ̂(k)

)
K + 1


In the application below I also construct confidence intervals by inverting the permutation test

following the approach in Imbens and Rubin (2015); Ganong and Jäger (2018). The confidence

8See Phipson and Smyth (2010) for a similar argument in a different setting.

9



interval can be interpreted as the set of second-differences in local average cohort effects which
the test fails to reject. In particular it is the interval B such that for all b ∈ B one would fail to
reject null hypothesis that: H0,B : 1

P

∑
p∈P ∆∆apψc = b for for all possible draws ϵap and a, p s.t.

c = p− a

I follow a similar approach to that described in Ganong and Jäger (2018) to construct the
confidence intervals. I test the above null for a given value b by reconstructing the data adding in
a hypothetical effect b to one of the first differences. That is I replace the sequence listed above
with the following reconstructed data: {∆pYa−1,p,c̃+1,∆

pYa,p,c̃ + b}p∈P,a=p−c̃. I then construct
a permutation p-value following the approach described above. I use a bisection algorithm to find
the endpoints of the confidence interval.

4. Empirical application
A. Background

In Reynolds (2024), I argue that there has been a decline in the health and human capital of
Americans born after 1947, relative to the prior cohort trend. I initially showed that the trend across
cohorts in age-adjusted educational attainment, wages, maternal health (proxied by the birth weight
of infants), and mortality all exhibited trend breaks near the 1947 cohort, such that each outcome
declines for subsequent cohorts relative to the prior trend. I argued there that these simultaneous
trend breaks, while striking, could in principle reflect differences in external factors which these
cohorts were exposed to, rather than underlying differences in health and human capital. That
is, cohorts born after 1947 may have been otherwise similar to earlier cohorts, but were merely
unlucky to have experienced bad conditions throughout their lifetime.

I therefore used two methods to provide evidence under weaker assumptions about the nature
of external factors, that these patterns reflect a decline in the underlying health and human capital
of cohorts born after 1947, relative to the prior trend. First, I estimated traditional age-period-
cohort models, which assume cohort, age, and year factors are each additively separable. Second,
I estimated models with a trend break of unknown location in cohort effects while allowing for
a separate polynomial in age in each year, adapting methods from the structural break literature.
Both methods revealed strong evidence of a trend break at the 1947 or 1948 cohort in underlying
health and human capital evident in each of the above outcomes.

However, doubts could remain depending on one’s comfort with the assumptions. One pos-
sible concern is that both methods assume constant age, period, and cohort effects. Heterogeneity
and complex interactions in these effects appear plausible: for example the impact that the human
capital of cohort has on outcomes could depend on features of the labor market in a given year, or
it may change throughout a cohort’s lifecyle. Another potential concern is that while the controls
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based on separate polynomial in age in each year, while flexible, are fundamentally parametric and
will only be guaranteed to be valid if the assumed parametric form is correct.

Below, I therefore apply the methods developed in this paper to test for a large second dif-
ference in local average cohort effects at the 1947 cohort. This can be seen as a generalization of
testing for a “trend break” in cohort effects. These methods, as described above, allows for very
unrestricted heterogeneity in the interaction between fixed features of cohorts and external factors
which vary by year and age. A downside of course is that the inference is highly local to the 1946
to 1948 cohorts and the age-by-year factors they experienced.

B. Data
I study the same main outcomes and use the same data and sample restrictions as in Reynolds

(2024). More detail is given in that paper and the associated replication file.

I study median hourly wages of men age 25 to 54, using the Current Population Survey,
Merged Outgoing Rotation Group (CPS-MORG), from 1979 to 1993. I calculate the approximate
birth year as the survey year minus the respondent’s age. I restrict my analysis to cohorts born
between 1930 and 1965. These restrictions lead to a sample of 970,479 men with non-missing
earnings. I calculate the sample median separately for age-year-sex cells, using the survey weights.
I adjust earnings using the CPI-U-RS.

I study the birthweight of infants based on the year of birth of the mother as a proxy for
maternal health. I use the 1968 to 1995 Birth Data Files (National Center for Health Statistics,
n.d.). I calculate the approximate birth year of each mother as the infant birth year minus the
mother’s age. I restrict my analysis to births occuring in years years 1968 to 1995, to mothers who
were born between 1930 and 1970 and are ages 18 to 40. This results in a sample of more than 75
million births.I calculate mean birthweight in cells by year, single age, and mother’s birth year.

To study mortality, I use data from the Human Mortality Database on number of deaths and
population-at-risk by year and age. These data are derived from official vital statistics and census
estimates. I again define cohort as year minus age. I restrict my analysis to the years 1975-2019,
ages 25 to 85, and cohorts born between 1930 and 1965. I calculate the natural log of the mortality
rate separately for men and women by single age and year.

C. Results
The results of applying the above strategy to estimate the second difference in local cohort

effects reveal strong evidence evidence of the non-parametric equivalent of a trend break in cohort
effects located at the 1947 cohort for wages, maternal health, and mortality of men and women.

For each outcome, Figure 1 shows the sequence of point estimates Ψ̂c for the cohorts between
1937 and 1957. Panels A and B show that for both median log wage and mean birth weight (by
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Figure 1: Nonparametric Estimation of Difference in Local Average Cohort Effects

A: Median log hourly wage, employed men
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This figure shows the results of implementing the estimator of the Difference in Local Average Cohort Effects,
described in the paper. For each outcome, the panels on the left show the sequence of point estimates Ψ̂c for the
cohorts between 1937 and 1957. They also show permutation-based, constant-effect, 95 % confidence intervals based
on 1,000 simulations of the permutation distribution and a bisection algorithm. The confidence interval can be
interpreted as the set of constant second-difference in local cohort effects which the test fails to reject.
Data and sample restrictions follow Reynolds (2024). Panel A is based on CPS-MORG data, 1979-1993, and
includes men age 25-54. Panel B is based on vital statistics natality microdata, 1968-1990, mothers age 18-40. Panel
C and D are based on data from the Human Mortality Database, and include 1975-2019, ages 25-85.
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mother’s birth cohort) the estimated Difference in Local Average Cohort Effects for the 1947 cohort
are negative and large in magnitude — around 2 or 3 times larger in magnitude than any other
cohorts’ estimates. For both outcomes the other cohorts’ estimated Difference in Local Average
Cohort Effects are near 0 — with the confidence intervals including zero for all but one other wage
estimates and all except two other birth weight estimates.

Panels C and D show results for men’s and women’s log mortality. For both outcomes, the
estimated Difference in Local Average Cohort Effects for 1947 are positive and large in magnitude,
again on the order of 2 times the magnitude of any other estimates. For these outcomes, however
the other cohort’s estimates are much less tightly centered around zero however — oscillating
around zero with the confidence interval often not including zero.

Interestingly, the evidence of a relative decline in health and human capital beginning sud-
denly after the 1947 cohort using the nonparametric approach is even stronger than that shown in
Reynolds (2024) using parametric approaches. This is true first with respect to the consistency of
the timing of the relative decline. In Reynolds (2024), I estimated models with a trend break of
unknown location in cohort effects while controlling for a separate polynomial in age in each year,
adapting methods from the structural break literature. The estimated break locations from these
parametric (but flexible) models, shown in Table 1 of Reynolds (2024), were concentrated very
near 1947 for all outcomes. However, the exact cohort where the trend break was estimated to oc-
cur did vary across outcomes: between 1946 and 1950. In contrast, the nonparametric estimates of
this paper point towards a sudden decline beginning precisely after the 1947 cohort in all outcomes.
For all four outcomes the largest estimated difference in Local Average Cohort Effects shown in
Figure 1 is for the 1947 cohort. These difference could suggest misspecification in the parametric
cohort trend break model estimated in Reynolds (2024). In particular, the imposition that the size
of the trend break in cohort effects is of the same magnitude in all years/ages is completely relaxed
in the nonparametric approach presented here.

The magnitudes of the Differences in Local Average Cohort Effects are also all much larger

than the estimated magnitude of the trend breaks for the same outcomes from the parametric trend
break model in Reynolds (2024). This could again be due to misspecification in the additively-
separable cohort trend break model. Although it is important to note that the nonparametric esti-
mates are only informative about very local differences between the 1946, 1947, and 1948 cohorts;
while the other models if correctly specified are informative about differences in cohort health and
human capital more broadly for the cohorts born 1930 to 1965 (up to trend).

Figure 2 illustrates the permutation-based test of the sharp null that all of the second difference
in local cohort effects for the 1947 cohort are 0. The dashed line shows the point estimate of Ψ̂1947

and the histogram shows the permutation distribution based on 10,000 simulations. The implied
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Figure 2: Permutation test of the sharp null that all of the differences in local cohort effects for the
1947 cohort are 0

A: Median log hourly wage, employed men B: Mean birth weight, by mother’s cohort
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This figure illustrates the permutation-based test of the sharp null that all of the second difference in local cohort
effects for the 1947 cohort are 0. The dashed line shows the point estimate of Ψ̂1947 and the histogram shows the
permutation distribution based on 10,000 simulations. Data and sample restrictions follow Reynolds (2024) and
Figure 2.
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p-value of the “sharp null” hypothesis that the second-difference in cohort effects is equal to zero
in all years for log wage is .0013, while those for the other three outcomes are .0002.

These results provide strong evidence evidence of the non-parametric equivalent of a trend
break in cohort effects located at the 1947 cohort, from a quite unrestricted model with weak
assumptions. The remaining threat to validity would be non-random changes in the impact of
age across years between neighboring ages. For example, a large shock in a given year to the
health of those age 30 and under, which did not impact those age 31 and over. Alternative external
explanations, or more broadly external factors impacting each of the four outcomes, are generally
thought to be smooth in age. For example, the effects of shifts in supply or demand on wages will
be smooth as long as individuals who are close in age are substitutable (Card and Lemieux, 2001).
Similarly, the effect of “biological aging” on health is generally thought to be a smooth, continuous
process.

Discrete policy cutoffs based on age could seem to be a threat, but note that to generate
the above results they would have to “follow” the same cohort over time. For example, moving
from age 30 in 1997, to age 31 in 1998, to age 32 in 1999 and so on. A large shock in a single
year to one age and not the neighboring age would not yield a statistically significant estimate
because the permutation-based-inference procedure would correctly reveal that such a pattern is
not particularly “unlikely” under the null.9

5. Conclusion
This paper bring heterogeneity into the “cohort effects” setting, by considering a nonseparable

model which allows for unrestricted interactions between fixed features of cohorts and external
factors which vary by age and year. I define Local Average Cohort Effects as the counterfactual
average outcomes a cohort would have if they had experienced the external age-by-year factors of
a cohort born one year earlier

I then study properties of the estimator proposed by McKenzie (2006) under this specified
model. I show that this estimator identifies second differences in Local Average Cohort Effects
under the assumption that shocks to neighboring ages in neighboring years are exchangeable. This
assumption also suggests a permutation-based approach to inference.

Other estimators can also be studied in the setting specified here. For example, one could con-
siders partial identification of particular linear functions of Local Cohort Effects under assumptions
on the magnitude of external age-by-year shocks (similar in spirit to Petterson et al. 2023). For

9Consider a simple example where in one year the second difference in outcomes for the 1947 cohort is equal to Z,
an economically meaningful magnitude, but in all other years the second difference is zero. The point estimate would
be Z, and the resulting permutation distribution would have half it’s mass at Z and half it’s mass at −Z — implying
the outcome is quite likely under the null.
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example one could impose an upper limit on how different the external shocks hitting workers age
25-27 can be from that hitting those age 28-30.
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