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Abstract
I show evidence that recent increases in the mortality of white Americans are rooted in a sharp
decline in the health of cohorts born after World War II, relative to the trend for earlier-born
cohorts. These cohort health differences are evident by the 1980s, suggesting recent mortality
increases have deep roots which predate the opioid epidemic and recent economic distress. I
identify the role of cohort health by imposing the impact of age on mortality to follow the
log-linear, Gompertz form. This imposition yields the sharp, falsifiable prediction — strongly
borne out in the data — that a decline in cohort health will result in changes in the slope of the
age profile of log mortality at the same cohort in each year. That is, log mortality rates in every
year between 1985 and 2019 exhibit slope changes centered at the 1946 cohort for white men
and the 1949 cohort for white women, consistent with a health decline beginning precisely
with those cohorts. The size of these slope changes imply that the average mortality rate of the
1960 cohort of white women has been 22 percent higher and that of men 37 percent higher,
than they would have had health followed the trend for earlier-born cohorts. Any explanation
of the root cause of recent increases in mortality must be able to explain this sharp cohort
pattern. I close the paper by beginning the search for such a root cause.
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1 Introduction

Case and Deaton (2015) document a disturbing trend of increasing mortality among 45 to 54
year old non-Hispanic white Americans since 1999. The initial discussion of a possible cause
focused on factors that changed between 1999 and 2012, such as the increasing availability of
prescription opioids and heroin and changing economic conditions for those without a college
degree. Subsequent research has suggested instead that the mortality increase may be due to cohort
differences in health and disadvantage which predated the 1990s (Case and Deaton, 2017; Lleras-
Muney, 2017; Masters et al., 2017; Zang et al., 2018). That is, white Americans born between
1958 and 1968 — and therefore aged 45 to 54 in 2012 — may be less healthy on average than
those born between 1945 and 1955 — who comprised the 45 to 54 year old age group in 1999.

I provide strong evidence and a detailed investigation of this cross cohort decline in health and
its role in mortality increases of white Americans. I show that the age profile of log mortality de-
parts from its usual linearity, known as Gompertz law or the Gompertz-Makeham law (Gompertz,
1825; Olshansky and Carnes, 1997; Chetty et al., 2016). The age profile is instead kinked, at a
different age in each year. These kinks, or sharp slope changes, have a specific staggered structure
by age across years, such that they are consistently located at the 1946 cohort for men and the 1950
cohort for women. In each year between 1985 and 2019, log mortality rates are very close to linear
in age between the 1930 and 1946/1950 cohorts. Then for each cohort born after 1946 (for men)
or 1950 (for women) mortality is increasingly elevated relative to what the Gompertz law fitted to
earlier cohorts would predict. These relative mortality increases are particularly steep until around
the 1960 cohort when they began to taper off.

This staggered, kinked pattern is remarkably consistent with a model in which i.) the effect
of age on log mortality is linear, and ii.) the trend in health across cohorts hit a sudden stop and
health declined for subsequent cohorts relative to the prior trend. Under this assumption of a linear
age effect, my evidence suggests that there was a break in the cross cohort health trend near the
1946 cohort for white men and near the 1950 cohort for white women. Health improvements
across successive cohorts born between 1930 and the late-1940s suddenly stopped in the late-
1940s. Instead, white Americans in each cohort born between the late-1940s and the mid-1960s
appear to be less healthy than those born a year earlier, at least relative to the pre-break trend.

Any explanation of the root cause of recent mortality increases needs to be able to match these
sharp cohort patterns. It also must take seriously the fact that the health decline was already evident
in 1985, suggesting that these cohorts were already in worse health by their 30s. Recent expansions
in opioid supply may have exacerbated the suffering of the cohorts born after 1946 but they cannot
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be the root of these cohorts’ decline. Refinements of Case and Deaton’s preliminary theory of
“cumulative disadvantage” would need to be able to explain why declining in the demand for
unskilled labor which began in the 1970s so negatively affected men born after 1946 and women
born after 1950, but had a much smaller effect on those born even a year or two earlier.

Consider an example of the model described above, and the staggered kinks in the age profile
of log mortality it would produce. A decline in the health of cohorts born after 1946 would result
in a slope change at age 39 in 1985, age 40 in 1986, age 41 in 1987, age 42 in 1988, etc. —
with the age at which the slope change occurs increasing by one with each subsequent year —
culminating in a slope change at age 69 in 2015. The existence of such particular non-smooth
non-linearities by age across years would be remarkably hard to attribute to other differences in
the health environment unrelated to cohort.

I show that these precise predictions, regarding staggered slope changes in the age profile of
log mortality, are strongly borne out in all years between 1985 and 2015. For example, Figure 1
shows the log mortality rate of white men for 1985, 1995, 2005, and 2015, along with estimated
piecewise-linear models. In each year the age-profiles exhibit kinks similar to the staggered struc-
ture described above: at age 40 in 1985, age 48 in 1995, age 60 in 2005, and age 68 in 2015. This
staggered location of slope changes by age corresponds to a nearly identical location by cohort,
with the estimated breaks at the 1944 cohort in 1985 and 2005, and at the 1946 cohort in 1995 and
2005. These example years are not unique. Estimation of piece-wise linear models of unknown
location, using the structural break methodology of Hansen (1999, 2000) reveals strong statistical
evidence that in all years between 1985 and 2019 a slope change exists and is located at or near the
1946 cohort. Similarly, for white women the change in slope is located at or near the 1949 cohort
across all years. 1

Motivated by these reduced form patterns consistent with a decline in cohort health, I estimate
models of log mortality including linear age effects in each year and a trend break in cohort effects.
As suggested by the graphical patterns and within-year regressions, I estimate a trend break in log
mortality to occur at precisely the 1946 cohort for white men, and between the 1948 and 1950
cohort for white women. The trend break is also large: the smallest estimate across specifications
suggests that the 1958 cohort of white women has had on average approximately 22 percent higher
mortality rates than they would have absent the trend break. Similarly, it implies that the 1956
cohort of white men had on average approximately 28 percent higher mortality rates than what

1For women, in all 35 years the confidence interval for the location of the slope change includes the 1949 cohort
and the point estimate is never more than three years away from 1949. For men, the fit is slightly less tight: for 30
of the 35 years the confidence interval for the location of the slope change includes the 1946 cohort — with a period
between 2006 and 2012 where the slope change estimates are a few cohorts “too early.”
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would be predicted by the trend for preceding cohorts. These findings are also robust to the inclu-
sion of higher-order polynomials in age — up to including a separate cubic-in-age in each year —
validating the assumption of linearity against an alternative of smooth but non-linear age-effects.

The cohort-specific explanation can also explain the staggered timing of recent increases in
mortality of different age groups. It explains the fact that white women’s mortality rate at ages 35-
44 began to increase in the early 90s, that of those age 45-54 in 1999, and that of those age 55-64
only in 2001 — unhealthy post-1949 cohorts drive mortality increases first at young ages and sub-
sequently at older ages, as they age into different age bins. I perform a simple simulation exercise
validating this intuition: the cohort-specific trend break model, without any other non-linear age-
by-year interactions, can match this staggered timing for white women. The year-over-year pattern
of the mortality rate of white men by age show less prima facie evidence of cohort effects, but the
cohort-specific trend break model also fits these patterns well for men. While these simulations
point to an important role for cohort factors in year-over-year patterns, my identification strat-
egy does not allow for a strict decomposition of the role of cohort versus period factors. Future
research should explore how interactions between the cohort decline in health and year-specific
factors, such as the AIDS epidemic and the recent expansion of opioid supply, ultimately produced
the observed mortality patterns.

Interestingly, there is some evidence of a similarly timed, but smaller, health decline for Amer-
icans of other racial groups — expanding the set of possible causes. The data is much noisier,
precluding the full analysis I conduct for whites, but pooling all years in a single models yields
evidence of a health decline beginning near the 1946 cohort for black women, and women and
men of other races, but not for black men. In years after 1997, when its possible to distinguish,
a similar decline is not evident for Hispanics — it is concentrated among non-Hispanic whites.
The cross-cohort decline in health is also remarkably widespread geographically across the United
States, with no obvious regional patterns in the size of breaks across states. I also show that rapid
improvements in mortality rates under the age of 30 suddenly slowed for the same cohorts, at a
minimum suggesting the adult mortality effects are not driven by mortality selection.

I conduct a preliminary investigation into the causes of the cross cohort health decline. There
are three main findings. First, these cohorts have lower educational attainment. The timing of
previously document declines in the share of each cohort with a high school or college college
degree (Heckman and LaFontaine, 2010; Card and Lemieux, 2001b) are remarkably similar to
the timing of the health declines. However, the educational declines appear unlikely to be large
enough to directly explain the mortality increases. This could suggest that these cohorts health
and “human capital” had already declined by age 17 — however other proxies of early life health
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did not decline (though some suddenly stagnated). Second, the average birth order (or parity) of
children also changed trend sharply in 1946, such that after that year an increasing share of children
were the 3rd or later born child in their families. Simulations suggest this could explain around one-
third to one-half of the mortality increase. Third, motor vehicle use increased sharply after 1945
and the gasoline used in motor vehicles included large and increasing quantities of lead additives.
Fetal and early life lead exposure has been linked to poor health and cognitive development, and
high child blood lead content was ubiquitous across the US when these cohorts were children 2

Observable characteristics of where these cohorts grew up and their family background, maternal
smoking, cohort crowding, other forms of pollution, early life mortality selection, and early career
labor market conditions all appear less likely to be important causes — though more research is
needed.

The theory advanced in this paper also has the testable prediction that the age profile of log
mortality should continue to exhibit the same staggered slope changes, evident as each new year of
data is released, with slope changes continuing to occur at or near the 1946 cohort for white men
and the 1949 cohort for white women. The initial draft of this paper only used data up to 2015
— so the theory has already “passed” four years of falsification tests in that the pattern still holds
through 2019. The cohort “kink” may even be evident in the age profile of COVID-19 mortality,
with cause-specific mortality rates from this virus of white men and women born after 1946 and
1949, respectively, being higher than expected given their age.

My paper contributes to the broad literature in economics and social science on the identifica-
tion of age, period, and cohort effects.3 This so-called age-period-cohort identification problem is
usually solved by imposing additive separability of each factor plus an additional, often ad hoc,
restriction. This usual approach can feel like a “black-box” — with no methods to assess credibil-
ity and little attention to model fit. The key advantage of my alternative approach is that it yields
falsifiable predictions which allow for intuitive overidentification tests. Of course my approach
also imposes different assumptions to achieve identification — the credibility of which must be
assessed in any given setting. While, the usual approach is unrestrictive with respect to the shape
of the age, period, and cohort effects respectively; it precludes any interactions across these effects

2See eg. McMichael et al. (1986); Needleman (2004); Hollingsworth et al. (2022); Aizer et al. (2018) on the health
and cognitive effects of fetal and childhood lead exposure and Pirkle et al. (1994); Annest et al. (1983) for estimates
of children’s blood lead content. McFarland et al. (2022) estimate that the share of children with blood lead content
above the 2015 threshold for “clinical concern” increased from 50 percent for the 1940-45 cohorts to 100 percent for
the 1966-75 cohorts.

3See for example Hall (1968); Deaton (1997); Heckman and Robb (1985); Mason and Fienberg (2012) for method-
ological discussions; and Lagakos et al. (2018); Chay et al. (2014); Aguiar and Hurst (2013) for recent applications in
economics.
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— for example the impact of age is assumed to be fixed across years. My approach is more re-
strictive in one dimension by imposing a parametric form on the age effects, but less restrictive in
allowing this parametric impact of age to be different in each year. My approach may be useful in
other economic applications. For example, it could be used to test for cohort differences in unob-
served “skill”, in the context of Mincerian wage regressions in which the impact of experience is
traditionally assumed to be quadratic (Mincer, 1974; Card and Lemieux, 2001a).

In addition to Case and Deaton (2015), my paper contributes to a larger literature in demog-
raphy documenting patterns in the all-cause mortality rate of white Americans.4 Yang (2008) and
Masters et al. (2014) emphasize the importance of a cohort-perspective and estimate additively-
separable age-period-cohort models of mortality whose results suggest that mortality declines since
1960 are largely driven by cohort factors. Masters et al. (2017) and Zang et al. (2018) apply these
standard models to more recent data and find evidence for an important role for cohort factors in
recent mortality increases. As noted above, my approach to identifying cohort effects builds on the
standard approach used in these papers, with the advantage that it yields falsifiable predictions. My
result therefore adds additional credibility to these claims of an important role for cohort factors
in recent mortality increases. I also identify more precisely the cohort at which the health decline
appears to have begun.

2 Data

I use vital statistics data derived from death certificates and population estimates from the
Census Bureau to calculate mortality by single age and year.

I use the Multiple Cause of Death File from the Center for Disease Control and intercensal
population estimates from the Census Bureau and the Surveillance, Epidemiology, and End Results
(SEER) Program of the National Cancer Institute. Using these sources I calculate mortality and
mid-year population by single-age, race, and sex. I then calculate crude death rates — the ratio of
mortality over mid-year population — by single-age, race, and sex cells. I then define birth cohort
as year− age− 1 5

My main analysis considers the aggregate mortality rate of white males and females of the

4A large literature also examines widening gaps in mortality by education level, see for example Meara et al. (2008),
Olshansky et al. (2012), and Sasson (2016). My study differs from this literature, and follows Case and Deaton (2015),
by focusing on an increase in the mortality rate of the aggregate population of white men and women of all education
levels.

5This will introduce some measurement error into the birth cohort variable. If any thing this seems likely to lead to
a slight understatement of the size of the trend break, because eg. the mortality rate of the 1946 cohort will be affected
slightly by the mortality rate of the 1947 cohort.
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United States by single year of age. Hispanic-origin was not reported on death certificates in all
states until 1997, and is therefore not consistently recorded in the Multiple Cause of Death File
until that year. I therefore focus primarily on mortality rates for all whites, including Hispanics
and non-Hispanics.

In some supplementary analysis, I consider mortality rates of Hispanic and non-Hispanic
whites separately for 1997-2015. I construct these series by single age and year using an anal-
ogous approach and the same data source as described above.

In addition to national mortality rates, I construct estimates of the mortality rates of white
Americans separately for each of the 50 states. These estimates allocate deaths based on the state
of residence reported on death certificates. I again use intercensal population estimates from SEER
as the denominator.

I also digitize historical mortality data from annual vital statistics publications for the years
before microdata became available in 1959, allowing me to study the mortality rates of the relevant
cohorts early in life in Section 8. I digitized death counts by age-sex-race from the tables of
historical vital statistics volumes from 1933 to 1958. I combine these with population estimates
from the Census Bureau from 1933 to 19686. Combined with the above described sources this
allows me to calculate mortality rates for age-sex-race cells for 1933-2015.

I use a number of additional data sources, described in more detail below, in the preliminary
investigation into the cause of the cohort decline in Section 9. This includes data from the Cur-
rent Population Survey measuring educational attainment, data from the General Social Survey
measuring parental characteristics and family background, estimates of the smoking prevalence of
women of childbearing age from Holford et al. (2014), cause-specific mortality digitized from the
above-described historical vital statistics volumes, and the distribution of births by birth order (or
“parity”) over time from vital statistics volumes and Heuser (1976).

3 Evidence of cohort-specific trend breaks in log mortality

I show that the mortality rate of white men and women has deviated, in a way that is system-
atically related to cohort, from its usual log-linear relationship with age, the Gompertz curve. In
each year since 1985 those born after the 1946 cohort for men and 1949 cohort for women have
higher log mortality rates than the Gompertz curve would predict.

6For each year I use the estimates titled “Resident Population–Estimates by Age, Sex, and Race: July 1.”
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3.1 Methodology

I use the structural break estimation and testing framework of Hansen (2000) to provide formal
evidence of a break in the cross-cohort mortality trend.

Consider the following model of log-mortality:

ln(mortapc) = βpaa+ βpc c+ δp · (γp − c) · 1c≥γp + µp + εapc (1)

where a denotes age, p denotes period (eg. year), c denote cohort; and ln(mortapc) denotes the
log-mortality rate of individuals age a, in period p, and from cohort c. The parameters βpa and βpc
represent linear trends in age and cohort, respectively, in each year. I then allow in each year for
a trend break by cohort — thereby letting the affect of cohort have a piecewise linear form. The
size of the trend break is represented by δp. The precise cohort at which the trend break occurs is
treated as unknown and a parameter to be estimated, γp. µp is a year-specific intercept, and εapc is
an orthogonal error.

Because age and cohort are perfectly collinear in each year of data the linear trends in age
and cohort, βpa and βpc , are not separately identified. However, the following transformed model is
identified:

ln(mortapc) = β̃pa+ δp · (γp − c) · 1c≥γp + µp + εapc (2)

where β̃p = βpa − βpc . And the location, γp, and size δp, of the trend break by cohort are
identified.

I estimate the model separately for each year, by weighted least squares, following the method-
ology in Hansen (2000) 7 Algorithmically, this amounts to looping through different assumed
values of the trend break location γp, and selecting the location with the lowest sum of squared,
weighted residuals.

Following Hansen (2000) I invert the following likelihood ratio statistic to form 99 percent
confidence intervals for γp:

LR(γp) = n
S(γp)− S(γ̂p)

S(γ̂p)
(3)

where n denotes the number of observations, S(γp) is the weighted sum of squared residuals
from estimating equation 3 with the trend break location fixed at a given γp, and S(γ̂p) is the sum

7As weights I use a consistent estimate of the inverse of the variance of observed log mortality in each cell:
population·mortality

(1−mortality) (Schulhofer-Wohl and Yang, 2016).
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of squared residuals with the estimated break location γ̂p. I constuct the 99 percent confidence
interval as those values of γp such that LR(γp) <= 10.35, the critical value given in Hansen
(2000). While I allow for heteroskedasticity in inference on other parameters, this test requires
homoskedasticity.

Hansen (2000) also suggests that inference on δp is unaffected by treating γp as unknown. I
therefore form confidence intervals for δp using the standard formula for weighted least squares.

Following standard practice, I employ an ad-hoc restriction to not allow the location of the
cohort-break γp to be estimated to be one of the youngest of oldest cohorts in the sample: in each
year I restrict the location of the break to not be one of the 3 youngest or oldest cohorts.

3.2 Gompertz law and age restrictions

As described in the introduction, and expanded in more detail below, my main analysis re-
lies importantly on the log linearity of mortality by age, known as Gompertz law or Gompertz-
Makeham law (Gompertz, 1825)8. Importantly, this log linear relationship does not generally hold
at all ages. Initally, it appears Gompertz understood his “law” to apply to mortality rates for ap-
proximately ages 20 to 60 (Olshansky and Carnes, 1997).

In all of the main analysis I focus on log mortality rates between the ages of 30 and 75. I
begin analysis at age 30 because the log linear relationship between age and mortality only begins
near this age. Log mortality rates at ages under 30 are highly nonlinear in age in many years.
Appendix Figure 1 shows evidence of this for select sample years before my study period, 1965
and 1975. Appendix Table 1 shows that the root mean squared error of simple Gompertz models
of log mortality, with just a linear age term and a constant, is very low for ages 30-75. When
these models are extrapolated to younger ages the fit substantially worsens and the root mean
squared increases by around an order of magnitude. I impose the upper age restriction of age 75
for convenience, as the 1946 and 1949 cohorts for which I find the health decline to have begun are
only 69 and 66 in the final year of my sample (the Gompertz curve is known to fit less well after
age 90, so some upper age restriction would be required regardless).

3.3 Graphical examples for select years

In this section, I present graphical evidence of a break in the cross-cohort mortality trend for a
set of select years between 1985 and 2015.

8See Chetty et al. (2016); Finkelstein et al. (Forthcoming) for recent applications in economics.
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I provide graphical examples of this trend-break estimation method for select years, based on
fitting a piecewise linear model to log mortality rates of white men and women. I show plots
including the true log mortality rate, and the piecewise linear model and the location of the trend
break — estimated based on the procedure described above. Additionally, I show an extrapolation
of the linear trend estimated for pre-break cohorts to younger cohorts, and plot the deviation of
the true log mortality rates from the estimated pre-break linear trend. I restrict the sample to log
mortality rates for 30-75 year old white men and women, born between 1930 and 1965.

Figure 1 implements this graphical example of the trend-break estimation method for the log
mortality of white men in 1985, 1995, 2005, and 2015. The red circles show the true observed
log mortality rate for each single year of age. The solid blue line shows the estimated trend-break
model based on equation 2. The vertical, labeled gray line shows the cohort at which the trend
break is estimated to occur for that year. The dotted blue line extrapolates the estimated linear
trend for cohorts born before the trend break to younger, post-break cohorts.

Across the four year shown, the trend break is estimated to occur at different ages but at nearly
the same cohort — suggesting it is the result of health differences across cohorts. The breaks by
age are staggered with approximately 10 year gaps — occurring at ages 40, 48, 60, 68 for the years
1985, 1995, 2005, and 2015 respectively. As a result, the estimated breaks by cohort are nearly
identical — occurring at the 1944, 1946, 1944, and the 1946 cohort across the years shown.

Figure 2 plots the deviations of the true log mortality rates of white men from the estimated
linear trend for pre-break cohorts. That is, it shows the difference between the pre-break trend —
shown with a solid blue line for pre-break cohorts and a dotted blue line for post-break cohorts in
Figure 1 — and the true log mortality rates — shown in red circles. A horizontal gray line is now
plotted at the 1946 cohort.

In each year shown, the deviations are near zero for cohorts born before 1946, implying that
the a linear trend fits the log mortality rates well for these cohorts. Then suddenly at or near the
1946 cohort there is a trend break and the deviations increase for each subsequent cohort. The
trend break is particularly large in 1985 and 1995, with the 1955 cohort for example experiencing
log mortality rates approximately 60 and 40 log points, in the respective years, above what the
Gompertz curve for earlier cohorts would predict. The trend break is smaller but still clearly
evident in 2005 and 2015 — with the 1955 cohort experiencing log mortality rates around 20 and
15 log points above the prior trend in these two years.

Figure 3 replicates for white women the trend break examples shown in Figure 1. The trend
break in log mortality is less visible striking for women than for men — but still evident and
detected by the Hansen trend break estimation to occur at a similar cohort across years. The breaks
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by age are again staggered with approximately 10 year gaps — occurring at ages 37, 44, 56, 65 for
the years 1985, 1995, 2005, and 2015 respectively. As a result, the estimated breaks by cohort are
again close to identical — though later than for men — occurring at the 1947, 1950, 1948, and the
1949 cohort across the years shown.

Figure 4 plots the deviations of the true log mortality rates of white women from the estimated
linear trend for pre-break cohorts. That is, it shows the difference between the pre-break trend —
shown with a solid blue line for pre-break cohorts and a dotted blue line for post-break cohorts in
Figure 1 — and the true log mortality rates — shown in red circles. A horizontal gray line is now
plotted at the 1946 cohort.

In each year shown, the deviations are near zero for cohorts born before 1949, implying that
the a linear trend fits the log mortality rates well for these cohorts. Then suddenly at or near the
1949 cohort there is a trend break and the deviations increase for each subsequent cohort. Notably,
the trend breaks occur approximately 3 birth years later than those for white men. They are also
are more similar in size across years than those of men. Each of the years shown exhibit a trend
break such that the 1955 cohort experiences nearly .15 log points higher mortality than they would
have had the pre-break trend continued. As a result, the breaks in 1985 and 1995 are smaller for
women than men, and the breaks in 2005 and 2015 are similar for the two genders.

3.4 Estimates for all years

I now implement the above described approach to estimate trend breaks in log mortality rates
for all the years between 1985 and 2015. I estimate equation 2 for white women and men separately
for each year between 1985 and 2015 — restricting the sample to ages 30-75, and cohorts 1930 to
1965.

Panels A and B of Figure 5 show the results across years for the log mortality rate of white
women. The left panel shows for each year of data the estimated location of the cohort specific
trend break, γ̂p, as well as the 99 percent confidence intervals. For all years from 1985 to 2019,
the estimated trend break is between 1948 and 1952, and the confidence interval includes 1949.
The right panel shows for each year the size of the estimated trend break, δ̂p. The size of the trend
break in log mortality is initially near .04 and then declines to nearer .02 after 1990, but has begun
increasing again slightly since 2012.

I also use the asymptotically valid bootstrap procedure suggested in Hansen (1999) to test the
null hypothesis of no break, eg. H0 : δ

p = 0. For all years, the value of the F-type statistic for the
true data is larger than that calculated in all of the 1000 bootstrap repetitions that I run — implying
a P-value of less than .001 for the null of no break.
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Panels C and D of Figure 5 show analogous results for the log mortality rate of white men. The
location of the trend break is slightly less stable for men than for women. From 1985 to 2004, the
estimated trend break is precisely estimated and consistently located between 1945 and 1946, and
the confidence interval includes 1946. After 2004, the location becomes less precisely estimated.
Between 2004 and 2009 the point estimate drops to near 1940 and the confidence interval no
longer includes 1946. For 2009 to 2014, the point estimate jumps to 1945 and the confidence
interval again includes 1946. From 2015 to 2019 test point estimates are again all located at the
1946 cohort.

The size of the trend break for log mortality is initially larger for men than for women, it is
above .06 for the first 7 years examined. In later years it falls to near .02, similar to that estimated
for women. The size of the break for men is also growing in the last 4 years of data.

For men, in all years the implied P-value from the bootstrap procedure is less than .003 for the
null of no break.

Overall, the results in this section demonstrate that the patterns shown for select years in Fig-
ures 1 through 4 are not anamolous. In each year between 1985 and 2019 there exist slope changes
in the age-profile of log mortality, which occur at or near the 1946 cohort for men and the 1949
cohort for women. For women the location of these trend breaks are particularly consistent and
precisely estimated. For men the location of the slope change is very consistent and precisely
estimated in all years before 2004, but precision falls somewhat between 2004 and 2015 and the
breaks move earlier; however since 2015 the breaks have become more precisely estimated again
and are again consistently located at 1946. Further, in all years statistical tests provide strong ev-
idence in favor of rejecting the null hypothesis that no change in slope exists. As outlined in the
introduction, these slope changes are consistent with a cross cohort decline in health, beginning
for white men born after 1946 and white women born after 1949.

The initial draft version of this paper only included data through 2015 and was first submitted to
a conference in September 2018 when the 2017 to 2019 mortality data had not even been released.
Therefore the fact that the slope changes in log mortality are still located at the 1946 and 1949
cohorts, for men and women respectively, in the four most recent years provides an important out
of sample validation of the cohort-based theory.

4 A single structural break model

The above analysis allowed the location of the trend break in log mortality to vary by year. The
results appear to suggest that the trend break occurs in the same cohort across years. Therefore, in
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this section I estimate a single structural break model across years, which imposes that the cohort-
specific break occurs at the same cohort in all years. Guided by the above results, I allow the size of
the break to vary across years. Estimation of this single model allows me to probe the robustness of
the trend break results by including different specifications of a control function — which allows
a separate polynomial in age for each year.

I again use the approach of Hansen (2000) to estimate the following model:

ln(mortapc) = δp1,c · c+ δp2,c · 1c≥γ · (c− γ) + f(a, p) + εapc (4)

where ln(mortapc) denotes the log mortality rate of the cell of age a, period p, and cohort
c — for either white men or women. δp2,c estimates the size of the break in each year p, and γ
estimates the cohort at which a break occurs. I include increasingly flexible specifications of the
“control function” f(a, p). In most specifications the cohort trend δ1,c is not separately identified
from aspects of the control function, but main objects of interest, the size and location of the trend
break are identified.

As above all models are estimated by weighted least squares, following the approach outlined
in Hansen (2000). The sample includes the years 1985-2015, ages 30-75, and cohorts born from
1930-1970.

Table 1 reports the results of estimating equation 4, with the log mortality rate of white women
or men for single age-by-year bins as the dependent variable. Each column contains the results
from a separate regression, with progressively more flexible specifications of the control function
f(a, p) from left to right.

Column 1 includes a a full-set of year FEs, as well as a linear age term interacted with year,
eg. it allows for a different Gompertz curve in each year. The remaining two columns gauge
robustness, by adding progressively higher-order polynomials in age interacted with year. At the
most extreme, column 3 allows a separate cubic in age for each year, so allows the impact of age
on mortality to vary by year, albeit in a smooth parametric way.

The results for white women are shown in Panel A. For women the location of the trend break
is consistently estimated to occur between the 1948 and 1950 cohort across all specifications. Ad-
ditionally, the 99 percent confidence intervals, calculating by inverting the likelihood ratio statistic
of Hansen (2000) are very tight, each including at most two cohorts.

For women the average size of the estimated cohort break — the average value of δ2,c across
all years—changes slightly depending on the specification of the control function. For the main
specification in column 1, when I allow for separate linear-age-by-year controls, the break size is
estimated to be .027, with a standard error of .002. Adding the higher order polynomials-in-age
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interacted with year yields estimates ranging from .025 to .035. Even, the smallest estimate of .025
implies that the white women born in 1960 have had on average a 28 percent higher mortality rate
then if their mortality experience matched the trend for pre-1950 cohorts.

For each model I follow the bootstrap procedure described in Hansen (2000) to test the null
hypothesis that no trend break occurs, ie. that δp2,c is equal to 0 for all p. For all models, the value
of the F-type statistic for the true data is larger than all of the 1000 bootstrap repetitions, suggesting
a P-value of less than .001 for the null of no break.

Panel B reports analogous results with the log mortality rate of white men as the dependent
variable. For white men, the estimated location of the trend break is even more consistent and
precisely estimated. It is estimated to occur at the 1946 cohort across all specifications, and the 99
percent confidence intervals do not overlap any other cohorts.

As for women, the average size of the estimated cohort break for white men varies depending
on the specification of the control function. The range of estimates are very similar to that for
women: ranging from .034, with a standard error of .001, in the main specification with linear-age-
by-year controls, to .026 when I allow for cubic-age-by-year controls.

Again even the smallest estimate of .026, suggests a non-trivial impact of the trend break on
mortality rates. It implies that the white men born in 1956 have had on average a 29 percent higher
mortality rate then if their mortality experience matched the trend for pre-1946 cohorts.

For men as well, in all models the value of the F-type statistic for the true data is larger than all
of the 1000 bootstrap repetitions — implying a P-value of less than .001 for the null of no break.9

5 The cohort-specific trend break in log-mortality and year-
over-year trends in mortality at different ages

I next use the previously estimated model to assess whether the cohort-specific pattern can
explain the timing of recent increases, and stagnating improvements, in mortality by age. As de-
scribed above, the timing by year of mortality trend breaks has not been uniform across age: while
the age-adjusted mortality rate of non-Hispanics white women aged 45-54 began to increase in
1999 (Case and Deaton, 2015; Gelman and Auerbach, 2016), that of those aged 35-44 began to
increase earlier in 1991, while that of 55-64 year olds continued to decline until a sudden break

9For robustness, I also estimated models which include a full set of age fixed-effects and a full-set of year fixed-
effects. This model is akin to traditional additively-separable age-period-cohort models, but specifies the cohort effects
as piecewise linear. It therefore does not allow any age-by-year interactions. Interestingly, these models also yield
precisely estimated break locations, at 1946 and 1949 for men and women respectively, and larger estimated break
sizes, of .45 and .43 for men and women respectively.
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in 2010. Below, I use the shared cohort-specific trend break model estimated in the previous sec-
tion to assess whether this cohort pattern can explain the staggered timing of mortality increases
by age-bin. Intuitively, the question is whether “unhealthy” post-1949 cohorts have driven mor-
tality increases first at young ages and subsequently at older ages, as they move through the age
distribution.

To do so, I use the estimation results from the shared trend break model based on equation
4 and described in the previous section. I use the specification including a full set of year fixed-
effects and a separate linear age effect for each year, reported in column 1 of Table 1. I then use
the estimated model to simulate mortality rates by year and age group. Specifically, for each age-
year cell I predict log mortality, and then calculate predicted mortality as the natural exponential
of predicted log mortality, for each single age-by-year pair. Finally, I calculate the simulated age-
adjusted mortality for age-bins as the simple average across single ages.

Figure 5 shows the true age-adjusted mortality rates and those simulated from the above model,
for white women by year, for 35-44, 45-54, 55-64, year olds respectively. The simulated series is
not shown when the age-bin includes cohorts born before 1930 or after 1970, as the model cannot
produce counterfactual predictions for them. The simulated series closely tracks the true mortality
rates for all age bins. Notably, the simulated mortality rates match realized trend breaks in the
mortality rate of 45-54 year olds in 1998 and of 55-64 year olds in 2010. The simulated series also
nearly matches the increase in mortality of 35-44 year olds, predicting an increase starting after
1992 rather than the observed break in 1991.

Figure 6 shows analogous results for white men. The mortality experience of white men aged
35-44 shows the clear imprint of the AIDS epidemic — increasing between the early 1980s and
1995 and then declining sharply. Never the less, the simulated series from the simple cohort-
specific trend break model again closely tracks the true mortality rates for all age bins. Again for
men, the simulated mortality rates matches the observed trend break in the mortality rate of 45-54
year olds in 1998. It also matches the timing of the break for 55-64 year olds in 2010 — though
the size of the true increase is larger than the simulated one.

There is a relatively tight mapping between the mortality rates predicted from the cohort-
specific trend break model — without any other non-linear age-by-year interactions — and the
true year-over-year patterns in mortality by age. This suggests that cohort specific differences in
health plausibly played a key role in recent increases in mortality by age. As described in the
introduction however, it seems likely that the cohort decline in health interacted with year-specific
factors, such as the AIDS epidemic and the recent expansion of opioid supply, to ultimately pro-
duce the observed mortality patterns.
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6 Comparison to other ethnic groups and geographic hetero-
geniety

I next show some suggestive evidence that a similar — though smaller in magnitude — cohort-
specific trend break in log morality rates to that for white Americans is evident for black women,
and women and men of other races, but not for black men. I further show that the trend break
documented above is concentrated among non-Hispanic whites —in years when its possible to
distinguish — and a similar break is not evident for Hispanics.

To do so, I estimate the shared cohort-specific trend-break model of Section 4 for other racial
and ethnic groups. As in the previous section examining geographic heterogeneity, I estimate the
trend break model based on equation 2 with a full set of year fixed-effects and a separate linear age
effect for each year (as shown for all whites in column 2 of 1). I again follow Hansen (2000) and
the procedure described above.

I first estimate the same model for blacks and Americans of all other racial groups combined.
The sample again includes the years 1985-2015 and ages 30-75. I restrict the cohorts included in
the sample to 1930 to 1960. I do so to avoid inclusion of cohorts born near the passage of the Civil
Rights Act — for which previous research has documented large improvements health of blacks
linked to increased hospital access following desegregation (Almond et al., 2006; Chay et al., 2009,
2014).

Results for women are shown in Panel A of Table 3. The cohort at which the trend break is
estimated to occur is very similar across the 3 racial groups: 1949 for whites, 1946 for blacks,
and 1948 for other races. The average size of the estimated trend breaks is positive for women
of all racial groups, but the magnitude differs: from .0306 for white women, to .0199 for women
of other races, and .0115 for black women. Results for men are shown in Panel B — and those
for black men differ substantially from the pattern for other groups. The cohort at which the trend
break is again very similar for whites and the other racial group category: 1946 for white men,
and 1944 for men of other races (with a confidence interval which includes 1946). And again the
average size of the estimated trend breaks are positive for both these groups: .0388 for white men
and .0262 for men of other racial groups. However, for black men the location of the estimated
trend break is the 1952 cohort and the average size is estimated to be slightly negative at -.0066. A
thorough analysis of trends in mortality and health for other racial groups — and an understanding
of why they appear to differ for black men — is worthy of further study, but outside the scope of
this paper. 10

10Two additional facts suggest that the differing pattern for black men may be linked in some way to the HIV
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I then estimate the above model for the years after 1997 — when Hispanic-origin is reported on
death certificates in all states — separately for i) all whites, regardless of Hispanic-origin; ii) non-
Hispanic whites; and iii) Hispanic whites. Results shown in Appendix Table 2 show that restricting
estimation to non-Hispanic whites alone does not change the estimated location of the trend break
but increases slightly it’s magnitude. In contrast, the estimated location of the trend break for
Hispanic white women and men are 1939 and 1958 respectively. That for Hispanic women is
positive and slightly smaller than that for non-Hispanic whites, and that for men is negative and
small in magnitude. The apparently different cohort-specific pattern of health for Hispanics is
outside the scope of this study — but could be potentially due to changing immigration patterns.

Appendix A shows that the cohort-specific trend break in log mortality rates of whites docu-
mented above is remarkably widespread across the United States, suggesting that the associated
health decline in similarly widespread. For example, the precise cohort at which the trend break is
estimated to have occurred and the estimated magnitude of the trend break vary only slightly across
the four Census regions. Further, all 50 states have estimated trend breaks which are positive in
magnitude and greater than .01 for women and men. Estimates for women in all states are between
.005 and .045, and 30 out of 50 states have estimated break sizes between .015 and .025. For men
estimates range from .01 to .055, and 32 out of 50 states have break sizes between .025 and .035 11

7 Early-life mortality

As described above, my main empirical strategy is only applicable to mortality above the age
of 30, when mortality is generally log linear in age. Below I provide a descriptive analysis of
mortality patterns of White Americans by cohort at ages below 30 — which shows evidence of
trend breaks in infant and childhood mortality by birth cohort near the late 1940s such that rapid
improvements between the 1930s and the late-1940s cohorts suddenly slowed — and at some ages
stopped completely. More detail on the data and estimation, as well as additional results are given
in Appendix B.

While the main analysis in earlier sections identifies cohort breaks as changes in the slope of
log mortality within a given year, and therefore “controls” quite flexibly for external factors which
vary by year, as well as factors which vary by age and year which are smooth in age; the analysis

epidemic. First, the mortality rate of HIV for black men — which was much higher than that for other racial groups —
peaked for the 1952 cohort and declined for subsequent cohorts. Second, the cohort-specific decline in log mortality
rates after the 1952 cohort, relative to the preceding trend, appeared suddenly in the late 90s. Results available from
author by request.

11Given smaller population sizes at the state-level, I impose the location of the cohort-specific trend break in each
state to match that at the national level and estimate the magnitude of the break.
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in this section identifies cohort breaks by pooling across years but for a fixed age. These results
are therefore more descriptive in nature.

Figure 8 plots estimates of the cumulative mortality rate from birth to age 30 by cohort. Panels
A and B show that both white male and white female early life mortality declined rapidly from
the 1933 to the mid-1940s cohorts. A trend break is estimated to have occurred at the 1948 cohort
for women and the 1945 cohort for men, such that for cohorts born after these years cross cohort
improvements in log mortality were much slower than they would have been had the prior trend
continued. The deviations of log mortality at these ages from the pre-break trend are plotted in
Panels C and D, for women and men respectively. Though the methodology differs from that
in previous sections the pattern is very similar. The magnitude of the trend break and resulting
deviations are large: resulting in a log mortality rate which is nearly 60 log points higher for
women and more than 40 log points higher for men, than it would have been had the trend for
earlier born cohorts continued.

The fact that improvements in early-life mortality slowed after the late-1940s cohorts points
against a simple mortality selection mechanism driving the health decline of these cohorts as adults.
In the context of a simple single-index selection framework (Bozzoli et al., 2009; Chay et al.,
2009), if the mortality improvements across the twentieth century were due to improvements in
the “threshold of survival”, then the trend break in infant and childhood mortality would imply an
effect of selection which would work in exactly the opposite direction of the adult health decline
I’ve found above. The selection effect would reduce the average health of surviving adults across
cohorts born between 1930 and around 1950, with this effect suddenly slowing for cohorts born
from 1950 to the mid-1960s. Alternatively, the patterns could be consistent with a more complex
model in which the threshold of survival is improving smoothly over time and the sharp break in
the infant and childhood mortality trend is caused by a decline in the entire distribution of latent
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childhood health. 12

8 Preliminary investigation into the cause of the cohort decline

I have presented evidence of a large decline in health across cohorts of White Americans,relative
to the trend for prior born cohorts, which began for white men born after 1946 and white women
born after 1949 and has contributed substantially to mortality trends over the last few decades. This
section provides a preliminary investigation into the cause of this cross cohort health decline. The
evidence I present reveals no clear smoking gun and suggests that a number of ex ante plausible
explanations are unlikely.

The large cohort health differences appear likely to be driven by large changes in the experi-
ences of these cohorts during critical periods in their lives— such as at labor market entry, during
adolescence, early life, or in utero. They also could be driven by some form of selection across
cohorts.

8.1 Educational attainment

Previous authors have noted a sudden decline in the educational attainment for cohorts of
Americans (of all races combined) born after the late 1940s. Heckman and LaFontaine (2010)
estimate that the U.S. high school graduation rate peaked at around 80 percent in the late 1960s
— roughly when the 1946 cohort was 18 — and has declined by 4-5 percentage points since then.
Card and Lemieux (2001b) highlight a sudden 12 percent fall in college entrance rates for men
from 1968 to 1978 — approximately the 1947 cohort to the 1957 cohort — and a stagnation in
prior improvements for women. These authors are largely unable to find an answer to why the pre-
vious trend of improvement in educational attainment suddenly stagnated and even reversed. Card

12Appendix Figure 5 also shows that improvements in the infant mortality rate for whites in the United States did
not occur in Canada or a set of European countries, and that the difference in infant mortality rate between the United
States and these countries suddenly began to widen after 1946. If one assumes that medical technology is similar
across countries and therefore that the “threshold of survival” is the same across countries, then one could interpret the
deviations of the United States as representing shifts in the underlying distribution of health — suggesting the health
of white infants in the United States who survive began to decline after 1946.

Of course if one moves beyond the single-index selection than the infant and childhood mortality patterns are not
informative about the time-varying selection effects at all. For example, if medical technology changed after 1946
such the the correlation between infant and childhood mortality and underlying health increased, this could work to
the reduce the average health of survivors. Additionally, it is also possible in principle that there were coincident trend
breaks at 1946, leading to both a) an improvement in the threshold of survival and b) a worsening of the underlying
health distribution, which both would then contribute to the worsened adult health of post-1946 cohorts. However,
these explanations appear quite complex and there is not an obvious historical change in medical technology which
would have these effects.
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and Lemieux (2001b) present an extensive study of possible causes of the decline and conclude
that for women it could be explained by low returns to education and cohort size, but that for men
the decline represents a fundamental trend break with no observable explanation. Acemoglu et al.
(2012) also note this stagnation in educational attainment, and suggest that the sharpness of the
change in trend by cohorts suggests it is unlikely to be caused by a sudden change in the school
system, and that “other factors are thus likely to be at play.”13

Panel A of Table 3 summarizes these patterns using data from the Current Population Survey
Merged Outgoing Roation Groups. I fit models which allow for two possible trend breaks by cohort
to the average years of schooling by birth cohort.14 The estimates suggest a precisely estimated,
large trend break in years of schooling located at the 1947 cohort for white men and the 1949 cohort
for white women. The models actually imply absolute declines in years of schooling between
1947/1949 and the early to mid-60s when a second trend break is estimated and a rebound began.
Appendix Table 6 and Appendix Figure 4 show this is driven by trend breaks along the educational
ladder: the share completing high school, a 4-year college degree, and an advanced degree all
exhibit trend breaks near those for years of schooling such that prior improvement in educational
attainment stops and reverses, before rebounding beginning with early-to-mid-1960s cohorts.15

However, the size of the cohort slope change in mortality appears likely too large to be ex-
plained by the decline in education alone, and therefore could suggest that there was a broader
decline in health and human capital for these cohorts which began before at least age 17. Quasiex-
perimental estimates of the causal effect of schooling on mortality, based on changes in compulsory
schooling laws generally suggest that a year of schooling reduces mortality by 0 to 6 percent.16 Ap-
plying even the 6 percent estimate to the trend breaks in table 3 would imply that the trend break
in schooling would directly cause a trend break in log mortality of .0066 for men and .0052 for
women — approximately a quarter and 19 percent respectively of my preferred estimate of trend

13Evocatively, they also write: “we do not believe that social science has so far produced an adequate account of
what went wrong with the U.S. human capital machine.”

14I pool data from 1990 to 2018, white individuals age 25 to 75, cohort is defined as age - year -1. I calculate
approximate average years of schooling for each cohort based on the 16 schooling categories in the CPS. I then
estimate the models allowing for two trend breaks in cohort using the sequential estimation approach suggested in
Hansen (2000) for such models.

15The size of the trend break in high school completion may actually be an underestimate due to the sampling frame
of the CPS and GED-recipients being counted as completing high school, see Heckman and LaFontaine (2010).

16See Galama et al. (2018); Mazumder (2012) for reviews. For example, Clark and Royer (2013) estimate a precise
zero effect of schooling on adult mortality in a particularly credible study based on UK schooling reforms. Gathmann
et al. (2015) pool data from 19 European countries and estimate that a year of schooling reduces the mortality rate of
men by 2.8 percent, but find no statistically significant effects for women; the largest individual country estimate for
men from that paper is only 5.6 percent The credibility of the approximately 6 percentage point estimate of Lleras-
Muney (2005) for the US is debated by Mazumder (2010, 2008) and Black et al. (2015).
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break in log mortality above. In a notable outlier, Buckles et al. (2016) use a different research
design based on Vietnam draft avoidance in the US and find IV estimates of the impact of a year
of college schooling on men’s mortality that are nearly identical to the cross-sectional association.
Generously treating estimates of the cross-sectional mortality gap between those with 12 years and
16+ years of schooling from Jemal et al. (2008) as the causal effect of 4 years of schooling would
imply that the trend break in schooling would directly cause a trend break in log mortality of .028
for men and .017 for women — 82 and 63 respectively of my preferred estimate of trend break in
log mortality above. 17

Other proxies of childhood health either stagnated or continued to improve, but did not de-
cline in absolute terms. As described above, improvements in infant and childhood mortality
suddenly slowed around 1950 but did not stop. Increases in adult height, often viewed as a proxy
of childhood nutritional status (Floud et al., 2011; Tanner, 1990), also suddenly stopped for white
Americans born between approximately 1955 and 1974 while the height of Europeans continued
to grow rapidly (Komlos and Lauderdale, 2007a,b; Komlos, 2010). Though again, height does
not appear to have declined in absolute terms. Although the educational attainment declines were
echoed in standardized test scores such as the SAT (Koretz, 1987; Bishop, 1989) — measures of
IQ famously continued increasing across these cohorts (Flynn, 1984). There was also no increase
in the rate of low birthweight births between 1951, when it was first recorded in Vital Statistics
reports, and 1970 (Chase and Byrnes 1970).18

8.2 Birth order

Changes in the average birth order, or “parity”, across cohorts associated with the baby boom
could be a plausible contributor to the cohort health decline. A large portion of the baby boom was
driven by changes in the age at first birth across cohorts of mothers, rather than changes in family
size (Ryder et al., 1980; Van Bavel and Reher, 2013). The first births of many cohorts of women
were “stacked up” near 1946 and 1947. Therefore the 1947 cohort consists of a particularly large
share of people who are first-born in their family. There is then a sharp trend break at the 1947
cohort in birth order, such that the share of people in each cohort who are later born children in
their families increases between the 1947 cohort and mid-1960s cohorts. A large and growing body

17It is hard to directly compare Buckles et al. (2016) causal effect estimate to my result as their dependent variable
is cumulative mortality over a 26 year period. As their IV estimates are indistinguishable from OLS, I treat their causal
effect estimate as near the cross-sectional association listed above. It is also hard to know more generally how to treat
their estimate, as it is such an outlier in the literature and their design differs considerably in using quadratic functions
of state and national draft risk as instruments for both veteran status and educational attainment.

18Though see Almond et al. (2005, 2002) for evidence that birth weight is not a “sufficient index” of infant health.
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of literature finds that later born children have worse outcomes as adults, even when outcomes are
examined within-family, by controlling for family fixed-effects (Black et al., 2005, 2011; Barclay
and Kolk, 2015; Breining et al., 2020).19

To summarize the potential effects of birth order on log mortality, I simulate the effect of ob-
served birth order changes across cohorts. I use within-family estimates of the effect of birth order
on mortality from Barclay and Kolk (2015) and observed birth order shares for white Americans
from Vital Statistics to simulate the impact of birth order changes on log mortality rates by co-
hort.20 The simulations aim to answer the question: how would mortality rates by cohort have
differed if cohorts only differences was their birth order shares?

As I did for education, I then fit trend break models allowing for two trend breaks of unknown
location, to the simulated mortality effects. The results, shown in Panel B of Table 3, suggest that
the birth order changes could generate trend breaks in log mortality at the 1947 cohort of .0073
for men and .0107 for women — 21 and 40 percent respectively of my preferred estimates of the
actual log mortality trend breaks. However, I also estimate a second trend break located at the 1964
cohort which is of opposite sign and larger in magnitude than the first break. This suggests that the
birth order effects alone would have lead to a sharp rebound in health after the 1964 cohort which
does not appear to have occurred. 21 Appendix Table 7 and Appendix Figure 5 show additional
birth order results.

8.3 Fetal lead exposure from motor vehicle gasoline

A number of facts point towards fetal lead exposure from motor vehicle gasoline as a possible
important driver of the cohort health decline.

Automobile production and fuel use were restricted during World War II and began to rapidly
increase soon after. Panel C of Table 3 show estimates of trend break models allowing for two

19The mechanism for the birth order effect is not fully understood. There is evidence that later born children
are actually healthier at birth than earlier born children, but by adolescence this pattern has already reversed with later
born children having more hospitalizations and higher mortality (Björkegren and Svaleryd, 2017). A leading candidate
mechanism is differences in parental ‘investments’ by parity, see eg. Price (2008) for direct evidence that parents spend
less ‘quality time’ with their later born children. Daysal et al. (2021) suggest the transmission of respiratory diseases
from older to younger siblings plays a role.

20Birth order shares for 1931-1939 are digitized from Vital Statistics reports, and for 1940-1970 are calculated from
U.S. Cohort and Period Fertility Tables, 1917-1980 compiled by Robert D. Hauser and available from the Office of
Population Research at Princeton. The simulation begins with observed mortality rates at age 40 of the 1949 and 1946
cohorts of white women and men respectively. I then use observed birth order shares and odds ratio estimates of the
impact of birth order on mortality from Barclay and Kolk (2015) to calculate simulated mortality rates at age 40 for
all other birth cohorts from 1931 to 1970. Trend break results for ages other than 40 are nearly identical.

21Handy and Shester (2019) conduct a similar exercise for educational attainment and find that birth order changes
can explain more than one third of the decline in college completion for white men born between 1946 and 1960.
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trend breaks of unknown location fit to annual time series of i) motor vehicle registrations and ii)
fuel usage by motor vehicles, for 1930 to 1970 from Historical Statistics of the United States US
Census Bureau (1975). Both series are estimated to have large trend breaks, in 1945 and 1944
respectively (with registrations increasing even more rapidly after another trend break in 1963).
The time series are also plotted in Appendix Figure 8.

Exposure to pollution from lead added to gasoline also likely increased rapidly over this period.
Lead concentrations of automotive gasoline decreased during WWII because the lead additive was
needed for aviation gasoline for military planes (Oudijk, 2010). The lead content of gasoline
generally increased after this period, and with the rapid increase in total fuel consumption the total
tons of lead added to gasoline consumed in the US increased rapidly 22. When lead additives were
phased out of gasoline beginning in the 1970s blood lead levels of children fell rapidly (though
lead would remain stored in bones and may be remobilized during pregnancy and lactation with
potential toxic effects on pregnant women and fetuses (Silbergeld, 1991; Gomaa et al., 2002)).

Fetal and early life lead exposure has been linked to poor health and cognitive development.
Early life lead exposure is thought to have broad and lasting negative health effects, impacting for
example the development of multiple organ systems, cognitive ability and emotional regulation,
and cardiovascular disease.23

High blood lead content was ubiquitous across the US when the cohorts whose health declined
were children or in utero. McFarland et al. (2022) estimate that the share of children with blood
lead levels above the 2015 threshold for “clinical concern” increased from 50 percent for the 1940-
45 cohorts to 100 percent for the 1966-75 cohorts. The first nationally representative estimates of
blood lead in 1976-1980 show average levels for 1-5 year olds more than 3 times this threshold for
all of the following demographic groups: whites and blacks, children from high and low income
families, residents of large and small MSAs, and in all 4 Census Regions (Egan et al., 2021).

The facts above could point towards fetal lead exposure in particular as a possible driver of the
health decline. The timing of the trend break in automobiles — of 1945 — would lead to a trend
break in fetal exposure to automobile-based lead pollution at approximately the 1946 cohort. In
contrast, childhood exposure would have increased for earlier cohorts — for example if age 5 was

22See Shelton et al. (1982) for estimates of the lead content of regular and premium gasoline. These fluctuated
considerably but generally increased over the period. The often cited series on total lead consumed in gasoline lead
additives, United States Bureau of Mines (1941-1970), (see eg. Reyes (2007); Curci and Masera (2018)) actually
measures the volume of lead consumed in domestic production of these additives — so will include production for
export and does not include imports. A series shown in Mielke et al. (2010) based on Senate testimony by the leading
manufacturer of lead additives also shows rapid increases from around 25,000 to more than 200,000 metric tons
between 1945 and 1970.

23See for example McMichael et al. (1986); Needleman (2004); McFarland et al. (2022); Hollingsworth et al.
(2022); Aizer et al. (2018) on the health and cognitive effects of fetal and childhood lead exposure.
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a critical period for lead exposure we would see health declines beginning with around the 1940
cohort, who would have been around 5-years old in 1945. Of course much more research is needed
to establish or falsify the importance of fetal lead exposure for the documented health decline.

8.4 Some evidence against other possible causes

8.4.1 Cohort crowding

The baby boom is often defined as beginning with the 1946 cohort — when there were sharp
increases in the number of births — making the casual observation that it “caused” the health and
human capital decline initially appealing. However, the cross cohort pattern in cohort size shown,
in Appendix Figure 9, is quite different than the piecewise linear pattern in mortality. Also see
Appendix Table 6 which fits trend break models, allowing for two breaks, to cohort size. Therefore,
a simple “cohort-crowding” theory (Easterlin, 1987; Bound and Turner, 2007) cannot generate the
cohort health decline. For cohort size to drive the patterns in cohort health a theory would have to
posit a complex lagged effect of cohort size on health and human capital.

8.4.2 Maternal smoking

The existing evidence on trends in smoking by women of childbearing age also make mater-
nal smoking appear an unlikely driver of the cohort health decline.24 There does not appear to be
survey evidence on maternal smoking specifically for this period, but the pattern of smoking rates
by women of childbearing age do not show any evidence of a sudden increase after the late-1940s.
Appendix Table 7 shows estimates of trend break models fit to smoking rates by women of child-
bearing age from Holford et al. (2014) which suggest a very different pattern. Also see Appendix
Figure 10.

8.4.3 Observable family background and childhood circumstances

Observable differences in the characteristics of the parents of these cohorts or where they grew
up do not appear likely to be driving their decline in health. Appendix Figures 11, 12, and 13 and
Appendix Table 8 show patterns and results of estimating trend break models by birth cohort for a
range of such characteristics from the General Social Survey. With two possible exceptions they

24Ex ante, if maternal smoking increased after 1946 it could be a plausible driver, as it has been associated with
low birth weight (Kramer, 1987; Almond et al., 2005) which itself has been linked to adult health and other outcomes
(Black et al., 2007), and there is some direct evidence of childhood cigarette smoking exposure and health (Simon,
2016).
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do not show evidence of trend breaks near the late-1940s in directions likely to negatively impact
health. First, the share of individuals who lived with both their mother and father at 16 appears to
decline rapidly after the mid-1950s cohorts. This share is estimated to have a trend break at 1954,
which is evident visually in Appendix Figure 12. The 99 percent confidence interval for the trend
break location just includes 1949. This could therefore be an important causal factor if that is the
true trend break location and sampling variation lead to the later estimated break location. Second,
there is an imprecisely estimated trend break near the 1942 cohort (and including the late-1940s
cohorts) in the share of individuals with both parents born in the US, such that the share with
both native-born parents decreases subsequently. I collected additional data from Vital Statistics
volumes — based on the universe of births — which record the share of births in each year to
mother’s born outside the US. Fitting this data to trend break models, yields a precisely estimated
trend break at 1944 (with that also the latest cohort in the 99 percent confidence interval) and a
second break in 1956. This data therefore suggest parents nativity is not likely to be driving the
health decline. 25

8.4.4 Conditions at labor market entry

The preliminary theory of “cumulative disadvantage” in Case and Deaton (2017) emphasizes
worsening opportunities at labor market entry — particularly for whites with low levels of edu-
cation. They posit that these worse opportunities at labor market entry trigger various negative
outcomes which build on each other, and culminate in an increased likelihood of untimely death.
While it seems very likely that worsening economic conditions interacted with and potentially ex-
acerbated the poor health of post-1946 cohorts, the time series pattern of real wages make it seem
unlikely that labor market entry was the critical period where these cohorts first fell behind.

Appendix Table 9 shows the results of estimating trend break models to annual series for real
mean log wages, the 10th percentile of real log wages, and mean real log wages for workers with
a high school degree, separately for men and women.26 The series are also plotted in Appendix
Figure 14. These results show rapid wage growth for men from 1962 until approximately 1972
— 1970 at the earliest —- and stagnation or decline thereafter. For women there is rapid growth,
followed by a slowing which is less severe and begins later than that for men.

25The magnitude of the trend break is also very small so would require an enormous difference in health between
children of native and foreign-born parents to drive the health decline. There is also a very small slowing in the rate of
increase in the share of fathers and mothers with a high school diploma in the 1950s, though both continue to increase.
Additionally, the small effect of this slowing seems likely to be offset by continued or accelerating increase in the
share of mothers and fathers with a bachelor degree.

26All series are calculated for full-time, full-year workers from the March Annual Social and Economic Supplement
of the Current Population Survey (CPS).
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By these measures the quality of the labor market at entry (eg. age 19) was improving for
men born between approximately 1942 and 1952. It was only after 1972, or 1970 at the earliest,
that the real wages of men with less education and at the bottom of the wage distribution began
to fall. If these measures are reasonable proxies for labor demand conditions then scarring effects
would need to be very non-linear in age to contribute substantially to the cohort health decline. For
example, in 1973, the first year of clear wage decline, the 1945 cohort was approximately 25, the
1946 cohort was approximately 24, and the 1947 cohort was approximately 23. For exposure to
this poor labor market to contribute to the the observed health decline, there would need to be a
large scarring effect on 23-year-olds, but little or no lasting effect on workers 24 and older. Similar
arguments apply to other years. The wage patterns for women appear even less consistent with
conditions at labor market entry an important role in the cohort health decline. Alternatively, it
would need to be that the rapid wage growth between 1964 and 1972 masks some other feature of
the labor market which was uniquely bad for young white men and women. 27

8.4.5 Other pollution

A number of other forms of pollution do not appear likely to be important causal factors.
Appendix Figure 15 and Appendix Table 10 show trends in eight important air pollutants from
the Community Emissions Data System (O’Rourke et al.). None of them show evidence of trend
breaks leading to more rapid increases after the late-1940s. Use of the pesticide DDT grew rapidly
after it was made publicly available in 1945, however its use then began to decline rapidly after
1959 (US Environmental Protection Agency, 1975). Also, the evidence on the human health effects
of DDT exposure is still mixed, in contrast to that for lead exposure (Turusov et al., 2002; Beard
et al., 2006; Eskenazi et al., 2009). Atmospheric nuclear testing also began in 1945 and continued
until 1963. However, while fallout from these tests covered the entire US, exposure was especially
severe in certain geographic areas, including particularly a few southwestern states downwind of
the Nevada Test Site (Meyers, 2019). The health decline is not particularly large in these states.

27Another explanation, building on Greenwood and Yorukoglu (1997), could be that there was a level shift in some
latent factor in 1974 which worked against demand for young unskilled workers. If each year of exposure early in
ones career (under the age of 27) matters for later health this level shift in the demand factor in 1974 could generate a
sharp trend break in cohort health around the 1946 cohort. However, to generate a sharp cohort trend break, workers
above the age of 27 would have to be very protected from this scarring.
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9 Conclusion

In this paper I document a sharp pattern in white mortality rates which suggests that the health
of white women born since 1949 and white men born since 1946 suddenly declined relative to
the trend for preceding cohorts. The uncovering of this apparent cross-cohort health decline could
motivate further research in two directions: one trying to uncover the root cause of the decline; and
two, exploring its implications beyond mortality.

I provide a preliminary investigation into the root causes of the apparent health decline. I
focused on national trends partly due to data availability but also because the health decline appears
to be remarkably widespread across the US. The lack of an obvious geographic pattern in the health
decline may make the search for a cause more difficult — this is not merely a Rust Belt problem
with a Rust-Belt-specific cause for example. Future research will therefore need to compile large
and detailed data to precisely summarize any variation in the health decline which does exist, and
to allow for sharp tests of particular theories of it’s cause. For example, data linking individuals’
death records with their siblings could allow for a more complete test of the role of birth order
and family background — by allowing a researcher to include family fixed-effects and birth order
effects. A large sample linking adult mortality to individuals’ detailed place of birth could be used
to examine the role of environmental exposures and other negative childhood shocks.

Further, the health decline across cohorts of white Americans that I document seems likely
to have broad implications beyond the recent mortality increase. These cohorts are beginning to
enter old age and their depressed health could increase health care spending, depress labor force
participation, and impact the solvency of specific programs such as Medicare and Social Security.
In ongoing work I am studying the apparent impacts of this health decline on outcomes besides
mortality (Reynolds, 2019).
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Figure 1: Trend break in log mortality rates, white men — select years
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Each plot shows the log mortality rate of white men by age for the year listed, for 1930 to 1965 cohorts. Red circles show the observed log mortality rate by single year of age. The
solid blue line shows plots the piecewise-linear, trend-break model estimated by weighted-least squares based on equation 2. The vertical gray line shows the age/cohort of the
estimated break in trend. The dotted blue line extrapolates the linear trend for cohorts born before the break to post-break cohorts.
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Figure 2: Deviations of log mortality from trend for pre-break cohorts, white men — select years
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Each plot shows the deviations of the true log mortality rates of white men from the estimated linear trend for cohorts born before an estimated trend break for the year listed. The
initial piecewise-linear, trend-break model is estimated by weighted-least squares based on equation 2, following the approach outlined in Hansen (2000). A horizontal gray line is
plotted at the 1946 cohort. Sample is restricted to men born between 1930 and 1965.
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Figure 3: Trend break in log mortality rates, white women — select years

A: 1985 B: 1995

Break at:
1947 cohort

-8

-7

-6

-5

-4

Lo
g 

m
or

ta
lit

y 
ra

te

30 35 40 45 50 55 60 65 70 75
Age

Break at:
1950 cohort

-8

-7

-6

-5

-4

Lo
g 

m
or

ta
lit

y 
ra

te

30 35 40 45 50 55 60 65 70 75
Age

C: 2005 D: 2015

Break at:
1948 cohort

-8

-7

-6

-5

-4

Lo
g 

m
or

ta
lit

y 
ra

te

30 35 40 45 50 55 60 65 70 75
Age

Break at:
1949 cohort

-8

-7

-6

-5

-4

Lo
g 

m
or

ta
lit

y 
ra

te

30 35 40 45 50 55 60 65 70 75
Age

Each plot shows the log mortality rate of white women by age for the year listed, for 1930 to 1965 cohorts. Red circles show the observed log mortality rate by single year of age.
The solid blue line shows plots the piecewise-linear, trend-break model estimated by weighted-least squares based on equation 2. The vertical gray line shows the age/cohort of the
estimated break in trend. The dotted blue line extrapolates the linear trend for cohorts born before the break to post-break cohorts.
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Figure 4: Deviations of log mortality from trend for pre-break cohorts, white women — select years
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Each plot shows the deviations of the true log mortality rates of white women from the estimated linear trend for cohorts born before an estimated trend break for the year listed. The
initial piecewise-linear, trend-break model is estimated by weighted-least squares based on equation 2. A horizontal gray line is plotted at the 1946 cohort. Sample is restricted to
men born between 1930 and 1965.
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Figure 5: Log mortality trend break and size estimates, separately by year
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These figures show the results of estimation of the trend break model in equation 6, with the log mortality rate of white women or men
by age, year and cohort as the dependent variable. A separate model is estimated for each year by weighted least squares, following the
approach outlined in Hansen (2000). The sample includes ages 30-75, and cohorts 1930 to 1965. The left panel shows for each year of
data the estimated location of the cohort specific trend break, γ̂p, as well as the 99 percent confidence interval calculated by inverting a
likelihood ratio test statistic. The right panel shows for each year the size of the estimated trend break, δ̂p.
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Figure 6: True mortality rates and those predicted by a model with cohort-specific trend break

White women White men

Each plot shows the true age-adjusted mortality rates and those predicted from a model including a cohort-specific trend break, for
white women or men by year, for 35-44, 45-54, 55-64, year olds respectively. The true age-adjusted mortality rates are the simple
average across single ages — ie. age adjusted assuming a uniform population distribution by age. To form the predicted series, I use the
estimation results from a shared trend break model based on equation 5. I use the specification including a full set of year fixed-effects
and a separate linear age effect for each year, reported in column 2 of Table 1. For each age-year cell I predict log mortality using this
model, and then calculate predicted mortality as the natural exponential of predicted log mortality, for each single age-by-year pair.
Finally, I calculate the simulated age-adjusted mortality for age-bins as the simple average across single ages.
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Figure 7: Cumulative mortality from age 0-30 by birth cohort, white men and women
Mortality rates and trend breaks
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Panels A and B show estimates in hollow circles of the cumulative mortality rate from age 0 to 30 by year of birth for White Women and White Men respectively. The vertical gray
line shows the cohort of the estimated break in trend from estimation of a piecewise-linear trend-break model of log mortality estimated by least squares. The estimated cohort break
location is also written with the confidence interval in brackets. The dashed line shows the estimated linear trend for cohorts born before the break, and extrapolates it to post-break
cohorts. Panels C and D show the deviations of the true log mortality rates from the estimated linear trend for cohorts born before the estimated break in trend, ie. the difference
between the hollow circles and dashed lines in Panels A and B. Cumulative mortality rates for each cohort are calculated by decrementing each cohort using observed infant
mortality rates and crude death rates at each from 1 to 30. These underlying rates are calculated based on birth and death counts from Vital Statistics volumes 1933-1959, the
Multiple Cause of Death File 1959-2000, and population estimates from SEER and Census. Single-age mortality rates are used age 1 to 4, and five-age mortality rates from ages 5 to
30 (eg. 5-9, 10-14) are used assuming a constant death rate within each bin.
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Table 1: Shared cohort-specific trend break, log mortality of white Americans
1980-2019

(1) (2) (3)

Panel A: White women
Average size of break 0.027 0.035 0.025

(0.002) (0.003) (0.003)
Location of break 1948 1949 1950

[1948, 1949] [1949, 1949] [1950, 1950]

P-value for existence of break < .001 < .001 < .001

Panel B: White men
Average size of break 0.034 0.033 0.026

(0.001) (0.001) (0.002)
Location of break 1946 1946 1946

[1946, 1946] [1946, 1946] [1946, 1946]

P-value for existence of break < .001 < .001 < .001

Year FEs Yes Yes Yes
Linear-age-by-year Yes Yes Yes
Quadratic-age-by-year No Yes Yes
Cubic-age-by-year No No Yes

Each column shows the results of estimation of a model based on equation 4, with the log mortality rate of white men or
women for single age-by-year bins as the dependent variable. All models are estimated by weighted least squares, following
the approach outlined in Hansen (2000). The sample includes the years 1980-2015, ages 30-75, and cohorts born from
1930-1970. The row titled “Average size of break” reports the average value of δ2,c across all years, with the standard error in
parentheses calculated by the delta method. The row titled “Location of break” reports the estimated cohort at which a trend
break occurs, with a 99 % confidence interval in brackets calculated by inverting the likelihood ratio statistic. The row titled
“P-value for existence of break” reports p-value from an F-type test for the null hypothesis that no trend break occurs, based
on 1000 bootstrap samples.
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Table 2: Shared cohort-specific trend break, log mortality
By Race, 1980-2019

Cohorts born 1930 to 1960

(1) (2) (3)
Whites Blacks Other races

Panel A: Women
Average size of break 0.0306 0.0118 0.0200

(0.0020) (0.0012) (0.0060)
Location of break 1949 1946 1948

[1949, 1950] [1944, 1946] [1947, 1949]

P-value for existence of break < .001 < .001 < .001

Panel B: Men
Average size of break 0.0378 -0.0084 0.0285

(0.0007) (0.0026) (0.0019)
Location of break 1946 1952 1944

[1946, 1946] [1951, 1952] [1944, 1945]

P-value for existence of break < .001 < .001 < .001

Linear age Yes Yes Yes
Year FEs No No No
Linear-age-by-year Yes Yes Yes
Quadratic-age-by-year No No No
Cubic-age-by-year No No No

Each column shows the results of estimation of a model based on equation 4, with the log mortality rate of men or women, of
the listed racial group, for single age-by-year bins as the dependent variable. All models are estimated by weighted least
squares, following the approach outlined in Hansen (2000). The sample includes the years 1980-2019, ages 30-75, and cohorts
born from 1930-1960. The row titled “Average size of break” reports the average value of δ2,c across all years, with the
standard error in parentheses calculated by the delta method. The row titled “Location of break” reports the estimated cohort
at which a trend break occurs, with a 99 % confidence interval in brackets calculated by inverting the likelihood ratio statistic.
The row titled “P-value for existence of break” reports p-value from an F-type test for the null hypothesis that no trend break
occurs, based on 1000 bootstrap samples.
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Table 3: Trend breaks in potentially important causal factors

First break Second break

Pre-trend Location Size Location Size

Years of schooling
(by cohort)

white men 0.0797 1947 -0.1110 1961 0.0743
(.0019) [1947, 1948] (.0036) [1958, 1963] (.0059)

white women 0.0816 1949 -0.0860 1963 0.0703
(.0011) [1948, 1949] (.0023) [1961, 1965] (.0049)

Simulated effect of birth order
on log mortality (by cohort)

white men -0.0044 1947 0.0073 1964 -0.0129
(.0002) [1946, 1948] (.0004) [1962, 1965] (.0009)

white women -0.0061 1947 0.0107 1964 -0.0201
(.0003) [1946, 1948] (.0006) [1962, 1965] (.0013)

Cars
(by year)

Registered motor vehicles 0.583 1945 2.155 1963 0.915
(millions) (.063) [1944, 1946] (.099) [1959, 1965] (.195)

Motor vehicle fuel use 598 1944 1,830
(millions of gallons) (114) [1943, 1946] (153)

Each row shows the estimation results of a separate trend break model which allow for two possible trend breaks of unknown
location, with the listed dependent variable. All models are estimated using the sequential estimation approach suggested in
Hansen (2000) for such models. The two columns titled “Location” reported the estimated location of the first and second
trend breaks, respectively, with 99 % confidence intervals in brackets calculated by inverting the likelihood ratio statistic. The
two columns titled “Size” report the magnitude of first and second trend breaks respectively, with standard errors in
parentheses. The column titled “Pre-trend” reports the estimated trend prior to the first break. I also calculate a
bootstrap-based F-test suggested in Hansen (2000), for the null of a model with one break versus the alternative of a model
with two breaks. For all models, except that for fuel usage, the p-value of this test is .001 or smaller. Therefore, for fuel usage
I report results from a model with just a single break.
For years of schooling, I pool data from the CPS MORG data 1990 to 2018, white individuals age 25 to 75, cohort is defined
as age - year -1. I then calculate approximate average years of schooling for each cohort based on the 16 schooling categories,
and estimate the trend break models for average years of schooling by birth cohort. The simulated effect of birth order on log
mortality is derived from within-family estimates of the effect of birth order on mortality from Barclay and Kolk (2015) and
observed birth order shares for white Americans from Vital Statistics. I then estimate the described trend break models by
birth cohort on the simulated data. The data on registered motor vehicles and fuel use by year comes from Historical Statistics
of the United States US Census Bureau (1975). The trend break models for these outcomes are estimated by year.
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A Lack of geographic variation

I show that the cohort-specific trend break in log mortality rates documented above is remark-
ably widespread across the United States, suggesting that the associated health decline in similarly
widespread. To do so, I estimate the shared cohort-specific trend-break model of Section 4 sepa-
rately for different states and regions of the United States.

First, I examine the location and size of the trend break by Census region. For each of the four
regions, I estimate the trend break model based on equation 2 with a full set of year fixed-effects
and a separate linear age effect for each year (similar national results are in column 2 of Table 1).
I again follow Hansen (2000) and the procedure described above.

Panel A of Table 2 shows the results for white women. The precise cohort at which the trend
break is estimated to have occurred varies only slightly across the four Census regions — from
1946 in the West to 1950 in the Midwest, with the estimates in the South and Northeast in between
at 1948 and 1949 respectively. The average size of the estimated cohort break — the average
value of δ2,c across all years — ranges from a low of .018 in the West to a high of .024 in the
Northeast. For all regions, the bootstrap procedure to test the null hypothesis that no trend break
occurs suggests a P-value of less than .001.

Panel B shows analogous results for white men. The cohort at which the trend break is es-
timated to have occurred again varies only slightly across the four Census regions — falling at
1942 in the West, 1946 in the Midwest and South, and 1944 in the Northeast. The average size
of the estimated cohort break for men are remarkably similar across the four regions. This size is
estimated to be identical up to 3 digits — at .026 — for the Northeast, South, and West. While the
estimate for the Midwest is not far off at .029. For all regions, the bootstrap procedure to test the
null hypothesis that no trend break occurs suggests a P-value of less than .001

To further explore potential geographic variation in the cohort-specific trend break I next exam-
ine it separately for each of the 50 states in the U.S. Given the smaller sample size at the state-level,
I impose the location of the cohort-specific trend break in each state to match that at the national
level. That is, I estimate separately for each state the trend break model based on equation 2 but fix
γc to be 1949 for women and 1946 for men. I again use a specification with a full set of year fixed-
effects and a separate linear age effect for each year, and estimate by weighted least squares —
using the implied variance of log mortality as weights. For each state I then calculate the average
size of the estimated cohort break — the average value of δ2,c.

Figure 7 shows maps and histograms of the distribution of these estimated break sizes for the
50 states — and demonstrates a surprising lack of variation in the size of the estimated breaks
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across states. No obvious regional patterns are apparent in the maps for either sex — the trend
break is widespread across the United States. Further, all 50 states have estimated trend breaks
which are positive in magnitude and greater than .01 for women and men. Estimates for women
in all states are between .005 and .045, and 30 out of 50 states have estimated break sizes between
.015 and .025. For men estimates range from .01 to .055, and 32 out of 50 states have break sizes
between .025 and .035.

Appendix Figure 2 shows a scatter plot between the break sizes of men and women, and re-
veals a positive association. States with large breaks for men tend to also have large breaks for
women. Alaska and Vermont stand out as states with large breaks for both men and women. On
the other extreme, California and Florida have particularly small estimated breaks for both sexes.
This positive association suggests that a single factor varying at the state-level may be driving
health differences for both men and women. A regression of mens break sizes on womens break
sizes confirms the positive relationship shown in the scatter plot. Using the estimated variance of
the female break sizes from the first-step as weights I perform a second-step, state-level regres-
sion. The estimated coefficient on male break size is .659, with a standard error of .079 and a
corresponding t-statistic of 8.29.

B Early-life mortality: Additional details and results

This appendix provides more details and additional results based on the mortality rates of White
Americans under age 30.

As described in the data section, I combine death counts by age-sex-race from historical vital
statistics volumes from 1933 to 1958 and counts from multiple cause of death data from 1959 with
population estimates from the Census Bureau and SEER.28 The historical data reports mortality by
exact year of age up to age 4, and then only reports mortality in 5-year age bins for older ages. For
consistency I aggregate post-1959 data into the same age bins.

I again use the framework of Hansen (2000) to test for the existence of and estimate the location
of trend breaks by cohort. I estimate models of the following form, separately for particular ages
or age groups a:

ln(mortapc) = βac c+ δa · (γa − c) · 1c≥γa + µa + εapc (5)

where a denotes age, p denotes period (eg. year), c denote cohort; and ln(mortapc) denotes the log-
mortality rate of individuals age a, in period p, and from cohort c.29 The parameters βac represents

28I use Census Bureau population estimates for 1933-1968 and SEER population estimates from 1969 on.
29For the five-year age bins the cohort is defined based on the youngest age in the bin. Eg. for the 5 to 9 year old
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a linear trend in cohort for log mortality at age a. I then allow a trend break by cohort — thereby
letting the affect of cohort have a piecewise linear form. The size of the trend break is represented
by δa. The precise cohort at which the trend break occurs is treated as unknown and a parameter
to be estimated, γa.

I calculate the cumulative mortality rate by first assuming that mortality is uniformly distributed
by age within the five-year age bins and then decrementing each cohorts mortality using the single
age mortality rates. This will introduce some measurement error in mortality for ages over 5,
potentially smoothing and understating the size of the break because cohorts will inherit some of
the mortality of nearby cohorts in the same age bin. For example, when the 1946 cohort is 9 it will
share the 5-9 age bin with the 1947-1950 cohorts and will be assigned an average mortality which
includes these cohorts potentially elevated mortality.

Appendix Figure 3 disaggregates these results by age, and shows broadly that this cohort spe-
cific trend break of mortality is evident across ages from infancy through childhood. It reports the
results of estimating cohort trend break models separately for log mortality rates by single years
of ages below age 4, and for 5-year age bins up to age 19. For all ages between 0 and 19 a trend
break is estimated to occur somewhere between the 1940 and 1951 cohort, and the trend breaks
are all estimated to have positive sign: implying a slowing of improvements in mortality after that
cohort. The confidence intervals for the trend breaks for the single ages 1 to 4, as well as those
for 5-9, for females all include 1949 and those for men all include 1946 — consistent with the
estimates in Figure 8 and for adult mortality earlier in the paper. Those for infant mortality and for
ages 10-14 and 15-19 differ slightly: with infant mortality for both sexes estimated to break a few
cohorts later, and that for preteens and teens estimate to occur a few cohorts earlier (but with large
confidence intervals).

The patterns by birth cohort of log mortality of white Americans in their twenties are different
than that described above for earlier ages. However, the mortality rate at these ages is mostly be
driven by external deaths (see eg. Figure A1 in Schwandt and Von Wachter (2020)) which seem
likely to be less informative about the underlying “health” of these cohorts. Mortality rates at
ages 20 to 29 do not exhibit any evidence of a health decline for the post-late-1940s cohorts, like
that documented at older ages in earlier sections and potentially suggested at younger ages in this
section. There are some fluctuations in mortality for these cohorts but they appear to be driven by
period-specific phenomenon — for example there is a sharp increase in mortality from homicide,
suicide, and drug poisonings beginning in the late 1960s, and mortality from HIV/AIDS sharply

age group, cohort c is defined as p − 5 − 1. Therefore, if the mortality rate has a trend break in the year when some
cohort c′ first enters a bin, the break will be estimated to occur at cohort c′.
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increasing after 1980.30

30See Shahpar and Li (1999) for a discussion of the period-specific increases in the 1960s and 1970s in homicide
mortality. My own informal, descriptive analysis suggests that there were sharp, period-specific (ie. occurring at the
same year for all single-ages of the twenties) increases in the 1960s in homicide, suicide, and drug poisonings which
were large enough to drive all-cause mortality increases. Results available by request.
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Appendix Figure 1: Examples of fit of Gompertz curve for select pre-sample years

White women
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White men
C: 1965 D: 1975
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Each plot shows the log mortality rate of white men by age for the year listed, for 1930 to 1965 cohorts. Red circles show the observed log mortality rate
by single year of age. The solid blue line shows plots the piecewise-linear, trend-break model estimated by weighted-least squares based on equation 2.
The vertical gray line shows the age/cohort of the estimated break in trend. The dotted blue line extrapolates the linear trend for cohorts born before the
break to post-break cohorts.
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Appendix Figure 2: Little variation across states in size of cohort-specific trend break in log
mortality

A: White women
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B: White men
break at 1946 cohort
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This figure shows the variation across states in the size of cohort-specific trend breaks in the log mortality of white
women and men. All figures are based on separate estimation by state of cohort-specific trend break models of the
log mortality of white women or men. Each model is based on equation 4 including a full set of year fixed-effects and
a separate linear age effect for each year. The location of the trend break γ is treated as known — 1946 for men and
1949 for women — and estimation is done by weighted least squares. The sample includes the years 1985-2015, ages
30-75, and cohorts born from 1930-1970. For each state I calculate the average value of the trend break δ2,c across all
years. The maps display the values of these average trend break sizes for each state. The histograms show the
distribution of these average trend break sizes across the 50 states.
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Appendix Figure 3: Relationship between state-level size of cohort-specific trend break in
white log mortality for women and men

CT

NY
NH

PA

ME

RI

NJ

VT

MA

MO

MN

MI
OH IN

NE

IL
ND

IA
SD

KSWI

MD

MS
TNSC

KY

TX

FL

GA

OK

NC
LA

AL WV
VA

DE

AR

NM

WA

OR
MTID

CA

AZ

UT

AK

HI

NV

CO
WY

Slope: .659
(.079)

.01

.02

.03

.04

.05

W
om

en
, s

iz
e 

of
 b

re
ak

.01 .02 .03 .04 .05
Men, size of break

This figure shows the relationship across the 50 states between the size of cohort-specific trend breaks in log
mortality for white women and those for white men. The first step is separate estimation by state of cohort-specific
trend break models of the log mortality of white women or men. Each model is based on equation 4 including a full
set of year fixed-effects and a separate linear age effect for each year. The location of the trend break γ is treated as
known — 1946 for men and 1949 for women — and estimation is done by weighted least squares. The sample
includes the years 1985-2014, ages 30-75, and cohorts born from 1930-1970. For each state I calculate the average
value of the trend break δ2,c across all years. The above figure plots this average value for each state for men versus
the average value for women in the same state. The second step is a regression with the estimated break sizes of
women as the dependent variable and that of men as the independent variable. The variance of women’s estimated
break size from the first step are used as weights in the second step.
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Appendix Figure 4: White childhood log mortality trend break estimates by age

White females
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C: Location of trend break D: Size of trend break
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These figures show the results of estimation of the trend break model in equation 5, with the log mortality rate of
white females or males by cohort and age as the dependent variable. A separate model is estimated for each
age/age-group shown by least squares, following the approach outlined in Hansen (2000). IMR refers to the log of
the infant mortality rate, ages 1 to 4 refer to the log mortality rate for single ages between 1 and 1, while the
remaining points refer to the log mortality rate for the listed age bin based on decrementing the crude death rates for
single years of age, and then taking the natural log (more detail in text). For the five-age bins cohort is defined based
on the youngest age in the bin. Panels A and C report estimates of the cohort at which the break is located, ˆgammaa

99 percent confidence intervals. Panels B and D report estimates and 95 percent confidence intervals of the size of the
break, δa of the The underlying rates are calculated based on birth and death counts from Vital Statistics volumes
1933-1959, the Multiple Cause of Death File 1959-2000, and population estimates from SEER and Census.
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Appendix Figure 5: Infant mortality rate of White Americans in comparison to other
English-speaking and European countries
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Panel A plots the infant mortality rate of white Americans based on vital statistics volumes and microdata, and the
mean infant mortality rate across Canada, Sweden, England and Wales, Denmark, and Switzerland from the Human
Mortality Database. Panel B plots the difference between these two series.
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Appendix Figure 6: Cohort decline in educational attainment for white men and women
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Data is from CPS Merged Outgoing Rotation Group and includes white men and women age 25-75 in years 1990-2018. Panel A plots the average years of
schooling by birth cohort — approximated based on 16 educational categories. Panels B-D plot respectively the share of each birth cohort with a high
school or GED degree, a bachelor’s degree, and an advanced degree.
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Appendix Figure 7: Birth order changes across white cohorts and simulated effect on log mortality
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Panels A and B show the share of white births by cohort which are of the listed birth order (parity) or higher. Data for 1930-1939 are digitized from Vital
Statistics reports, and for 1940-1970 are calculated from “U.S. Cohort and Period Fertility Tables, 1917-1980” compiled by Robert D. Hauser and available
from the Office of Population Research at Princeton. Panels C and D report detrended simulated log mortality rates to show the impact of these birth order
trends on log mortality rates by cohort. The simulation uses observed birth order shares, odds ratio estimates of the impact of birth order on mortality from
Barclay and Kolk (2015), and observed mortality rates at age 40 of the 1949 and 1946 cohorts of white women and men, respectively. More details in text.
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Appendix Figure 8: Motor vehicle registrations and fuel use

A: motor vehicle registrations
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B: Fuel usage by motor vehicles

20

40

60

80

100

M
ot

or
 v

he
ic

le
 fu

el
 u

se
 (b

illi
on

s 
of

 g
al

lo
ns

)

1930 1935 1940 1945 1950 1955 1960 1965 1970
year

This figure shows annual time series of a) motor vehicle registrations and b) fuel usage by motor vehicles, for 1930 to
1970 in the United States. Both series come from Historical Statistics of the United States US Census Bureau (1975).
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Appendix Figure 9: Cohort size

A: Number of births by year
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B: Population of each cohort at age 18

2

2.5

3

3.5

4

4.5

Po
pu

la
tio

n 
(m

illi
on

s)

1930 1935 1940 1945 1950 1955 1960 1965 1970
birth_year

Panel A shows the number of births in the United States by year. Panel B shows the population of each cohort when
they were age 18. Data comes from the Human Mortality Database, derived from vital statistics.
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Appendix Figure 8: Estimates of smoking prevalence of American women of childbearing
age
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Based on estimates of smoking prevalence by age and year (every 5 years) from Holford et al. (2014), derived from
survey data on retrospective smoking history. The figure plots age-adjusted smoking prevalence for women age 18-24
and 25-34 separately, assuming a uniform distribution of ages within age bins (ie. the unweighted average in each age
bin across smoking rates by single year of age).
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Appendix Figure 11: Parental education of White Americans by birth cohort

A: Share of fathers with high school diploma B: Share of mothers with high school diploma
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Each graph shows an estimate of parental educational attainment by individuals’ birth cohort, estimated from the 1972-2016 waves of the General Social
Survey. Each outcome is age-adjusted, by running a regression with cohort fixed effects and a quartic-in-age. The plots then show the estimated cohort
effects, plus the estimated age effect for age 35. All regressions use sampling weights.
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Appendix Figure 12: Family background and childhood circumstances of White Americans by birth cohort

A: Father’s occupational prestige score B: Mother worked while growing up C: Living w/ mother and father at 16
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Panels A-E shows an estimate of the average value of the listed variable for white Americans by year of birth, estimated from the General Social Survey.
Father’s occupational prestige score is based on 1980 occupational classifications and is only available in 1988-2010, so Panel A is based on those years.
The question on whether an individual’s mother was working is only available 1994-2016, so panel B is based on only those years. Panel C is based on
1972-2016. Panel D and Panel E are based on 1977-2016. Each outcome is age-adjusted, by running a regression with cohort fixed effects and a
quartic-in-age. The plots then show the estimated cohort effects, plus the estimated age effect for age 35. All regressions use sampling weights. Panel F
reports estimates directly from vital statistics volumes which report parent’s nativity.
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Appendix Figure 13: Where white Americans lived at age 16, by birth cohort
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The figure shows estimates from the General Social Survey of the share of white Americans who lived in the listed
type of place at age 16 by year of birth. ”City” refers to large cities over 250,000 people. ”Suburb” refers to a suburb
near a large city. “Large town” refers to a city/town of 50,000 to 250,000. “rural/small town” includes smaller towns
and rural areas. Each outcome is age-adjusted, by running a regression with cohort fixed effects and a quartic-in-age.
The plots then show the estimated cohort effects, plus the estimated age effect for age 35. All regressions use
sampling weights.
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Appendix Figure 14: Wage trends, United States

Mean ln weekly wage, FTFY men Mean ln weekly wage, FTFY women

6.4

6.5

6.6

6.7

6.8

Lo
g 

w
ee

kl
y 

w
ag

e 
(2

01
6 

$)

1960 1965 1970 1975 1980 1985 1990 1995
year

5.6

5.8

6

6.2

6.4

Lo
g 

w
ee

kl
y 

w
ag

e 
(2

01
6 

$)

1960 1965 1970 1975 1980 1985 1990 1995
year

10th percentile ln weekly wage, FTFY men 10th percentile ln weekly wage, FTFY women

5.7

5.8

5.9

6

6.1

Lo
g 

w
ee

kl
y 

w
ag

e 
(2

01
6 

$)

1960 1965 1970 1975 1980 1985 1990 1995
year

4

4.5

5

5.5

Lo
g 

w
ee

kl
y 

w
ag

e 
(2

01
6 

$)

1960 1965 1970 1975 1980 1985 1990 1995
year

High school, mean ln weekly wage, FTFY men High school, mean ln weekly wage, FTFY
women

6.4

6.5

6.6

6.7

6.8

Lo
g 

w
ee

kl
y 

w
ag

e 
(2

01
6 

$)

1960 1965 1970 1975 1980 1985 1990 1995
year

5.7

5.8

5.9

6

6.1

Lo
g 

w
ee

kl
y 

w
ag

e 
(2

01
6 

$)

1960 1965 1970 1975 1980 1985 1990 1995
year

Each panel shows the listed wage series estimated from the March Annual Social and Economic Supplement of the
Current Population Survey (CPS).
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Appendix Figure 15: Air pollution trends, United States
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Each panel shows estimates from the Community Emissions Data System (O’Rourke et al.) of the trend in emissions
of the listed air pollutant in the United States.
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Appendix Table 1: Root mean squared error of year-specific Gompertz models of log
mortality,

white men and women 1959-2014

Within sample Out of sample

ages 30-75 ages 20-29 ages 1-19

White men .092 .703 .914
White women .057 0.432 1.164

This table reports the root mean squared error of simple Gompertz regression models of log mortality for white men
and women betweeen 1959 and 2019. Weighted least squares regressions of log mortality with a linear age term and
a constant are estimated separately for each year, on observed log moratlity rates ages 30 to 75. The within sample
column reports the within sample root mean squared residual of these models pooled across all years (separately for
white men and white women). The out of sample columns report the root mean squared error when these models are
extrapolated out of sample to younger ages, ages 20-29 and ages 1-19 separately.
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Appendix Table 2: Shared cohort-specific trend break, log mortality of white Americans
By Hispanic origin, 1997-2019

(1) (2) (3)
All whites Non-Hispanic whites Hispanic whites

Panel A: White women
Average size of break 0.0165 0.0185 0.0149

(0.0004) (0.0004) (0.0021)
Location of break 1948 1949 1939

[1948, 1949] [1948, 1949] [1938, 1945]

P-value for existence of break < .001 < .001 < .001

Panel B: White men
Average size of break 0.0112 0.0131 -0.0043

(0.0006) (0.0006) (0.0008)
Location of break 1946 1946 1958

[1944, 1946] [1946, 1946] [1957, 1960]

P-value for existence of break < .001 < .001 < .001

Linear age Yes Yes Yes
Year FEs Yes Yes Yes
Linear-age-by-year Yes Yes Yes
Quadratic-age-by-year No No No
Cubic-age-by-year No No No

Each column shows the results of estimation of a model based on equation 4, with the log mortality rate for single
age-by-year bins as the dependent variable. The columns respectively show results for the mortality rate of i) all
whites, regardless of Hispanic origin; ii) non-Hispanic whites; and iii) Hispanic whites. All models are estimated by
weighted least squares, following the approach outlined in Hansen (2000). The sample includes the years 1997-2019,
ages 30-75, and cohorts born from 1930-1970. The row titled “Average size of break” reports the average value of
δ2,c across all years, with the standard error in parentheses calculated by the delta method. The row titled “Location
of break” reports the estimated cohort at which a trend break occurs, with a 99 % confidence interval in brackets
calculated by inverting the likelihood ratio statistic. The row titled “P-value for existence of break” reports p-value
from an F-type test for the null hypothesis that no trend break occurs, based on 1000 bootstrap samples.
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Appendix Table 3: Shared cohort-specific trend break, log mortality of white Americans
By Census Region, 1980-2014

(1) (2) (3) (4)
Northeast Midwest South West

Panel A: White women

Average size of break 0.024 0.021 0.020 0.018
(0.001) (0.001) (0.001) (0.001)

Location of break 1949 1950 1948 1946
[1949, 1949] [1950, 1950] [1947, 1948] [1946, 1946]

P-value for existence of break < .001 < .001 < .001 < .001

Panel B: White men
Average size of break 0.026 0.029 0.026 0.026

(0.001) (0.001) (0.001) (0.001)
Location of break 1944 1946 1946 1942

[1944, 1944] [1946, 1946] [1946, 1947] [1942, 1943]

P-value for existence of break < .001 < .001 < .001 < .001

Linear age Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes
Linear-age-by-year Yes Yes Yes Yes
Quadratic-age-by-year No No No No
Cubic-age-by-year No No No No

Each column shows the results of estimation of a model based on equation 4, with the log mortality rate of white men
or women — in the listed Census Region — for single age-by-year bins as the dependent variable. All models are
estimated by weighted least squares, following the approach outlined in Hansen (2000). The sample includes the
years 1980-2014, ages 30-75, and cohorts born from 1930-1970. The row titled “Average size of break” reports the
average value of δ2,c across all years, with the standard error in parentheses calculated by the delta method. The row
titled “Location of break” reports the estimated cohort at which a trend break occurs, with a 99 % confidence interval
in brackets calculated by inverting the likelihood ratio statistic. The row titled “P-value for existence of break” reports
p-value from an F-type test for the null hypothesis that no trend break occurs, based on 1000 bootstrap samples.
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Appendix Table 4: Trend break estimates, Educational attainment of white Americans by
birth cohort

First break Second break

Pre-trend Location Size Location Size P-value

Years of schooling, men 0.0797 1947 -0.1110 1961 0.0743 < .001
(.0019) [1947, 1948] (.0036) [1958, 1963] (.0059)

Years of schooling, women 0.0816 1949 -0.0860 1963 0.0703 < .001
(.0011) [1948, 1949] (.0023) [1961, 1965] (.0049)

High school degree (or GED), men 0.0080 1948 -0.0090 1962 0.0031 < .001
(.0001) [1948, 1948] (.0002) [1959, 1965] (.0004)

High school degree (or GED), women 0.0080 1948 -0.0082 1964 0.0023 < .001
(.0001) [1947, 1948] (.0002) [1935, 1965] (.0004)

Some college, men 0.0122 1949 -0.0224 1960 0.0199 < .001
(.0004) [1948, 1949] (.001) [1958, 1963] (.0015)

Some college, women 0.0152 1949 -0.0147 1963 0.0121 < .001
(.0003) [1948, 1950] (.0006) [1959, 1965] (.0013)

Bachelor’s degree, men 0.0079 1947 -0.0141 1960 0.0133 < .001
(.0004) [1946, 1948] (.0008) [1957, 1964] (.0012)

Bachelor’s degree, women 0.0095 1950 -0.0108 1962 0.0137 < .001
(.0002) [1949, 1951] (.0006) [1959, 1965] (.0011)

Advanced degree, men 0.0041 1945 -0.0088 1960 0.0056 < .001
(.0002) [1945, 1946] (.0003) [1957, 1963] (.0004)

Advanced degree, women 0.0048 1948 -0.0076 1964 0.0101 < .001
(.0002) [1947, 1949] (.0003) [1961, 1965] (.0008)

Each row shows the estimation results of a separate trend break model which allow for two possible trend breaks of
unknown location, with the listed dependent variable. All models are estimated using the sequential estimation
approach suggested in Hansen (2000) for such models. The two columns titled “Location” reported the estimated
location of the first and second trend breaks, respectively, with 99 % confidence intervals in brackets calculated by
inverting the likelihood ratio statistic. The two columns titled “Size” report the magnitude of first and second trend
breaks respectively, with standard errors in parentheses. The column titled “Pre-trend” reports the estimated trend
prior to the first break. The column titled “P-value” reports the value of a bootstrap-based F-test suggested in Hansen
(2000), for the null of a model with one break versus the alternative of a model with two breaks. I also conduct a
similar test for the null of no break vs. the null of one break, which yields P-values < .05 for all variables.
I pool data from the CPS MORG data 1990 to 2018, white individuals age 25 to 75, cohort is defined as age - year -1.
I then calculate approximate average years of schooling for each cohort based on the 16 schooling categories, and
estimate the trend break models for average years of schooling by birth cohort.
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Appendix Table 5: Trend break estimates, Birth order of white Americans by birth cohort

First break Second break

Pre-trend Location Size Location Size P-value

Share 2nd born or later -0.0095 1941 0.0176 1960 -0.0219 < .001
(.0013) [1937, 1943] (.0017) [1958, 1962] (.0017)

Share 3rd born or later -0.0083 1946 0.0185 1963 -0.0368 < .001
(.0008) [1942, 1947] (.0013) [1961, 1964] (.0025)

Share 4th born or later -0.0086 1947 0.0156 1964 -0.0288 < .001
(.0004) [1946, 1948] (.0007) [1962, 1965] (.0017)

Share 5th born or later -0.0068 1947 0.0118 1964 -0.0210 < .001
(.0003) [1946, 1948] (.0006) [1962, 1965] (.0013)

Simulated effect on ln(mort), men -0.0044 1947 0.0073 1964 -0.0129 < .001
(.0002) [1946, 1948] (.0004) [1962, 1965] (.0009)

Simulated effect on ln(mort), men -0.0061 1947 0.0107 1964 -0.0201 < .001
(.0003) [1946, 1948] (.0006) [1962, 1965] (.0013)

Each row shows the estimation results of a separate trend break model which allow for two possible trend breaks of
unknown location, with the listed dependent variable. All models are estimated using the sequential estimation
approach suggested in Hansen (2000) for such models. The two columns titled “Location” reported the estimated
location of the first and second trend breaks, respectively, with 99 % confidence intervals in brackets calculated by
inverting the likelihood ratio statistic. The two columns titled “Size” report the magnitude of first and second trend
breaks respectively, with standard errors in parentheses. The column titled “Pre-trend” reports the estimated trend
prior to the first break. The column titled “P-value” reports the value of a bootstrap-based F-test suggested in Hansen
(2000), for the null of a model with one break versus the alternative of a model with two breaks. I also conduct a
similar test for the null of no break vs. the null of one break, which yields P-values < .05 for all variables.
Observed birth order shares for white Americans comes from Vital Statistics volumes and Heuser (1976). The
simulated effect of birth order on log mortality is derived from within-family estimates of the effect of birth order on
mortality from Barclay and Kolk (2015) and observed birth order shares for white Americans. I then estimate the
described trend break models by birth cohort on the simulated data.
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Appendix Table 6: Trend break estimates, Cohort size

First break Second break

Pre-trend Location Size Location Size P-value

Cohort size at age 18 (mil.) -0.026 1936 0.139 1957 -0.167 < .001
(.016) [1935, 1939] (.018) [1956, 1959] (.009)

Cohort size at birth (mil.) 0.091 1958 -0.169 < .001
(.004) [1956, 1960] (.011)

Each row shows the estimation results of a separate trend break model which allow for two possible trend breaks of
unknown location, with the listed dependent variable. All models are estimated using the sequential estimation
approach suggested in Hansen (2000) for such models. The two columns titled “Location” reported the estimated
location of the first and second trend breaks, respectively, with 99 % confidence intervals in brackets calculated by
inverting the likelihood ratio statistic. The two columns titled “Size” report the magnitude of first and second trend
breaks respectively, with standard errors in parentheses. The column titled “Pre-trend” reports the estimated trend
prior to the first break. I conduct bootstrap-based F-tests suggested in Hansen (2000), for i) the null of a model with
one break versus the alternative of a model with two breaks, and ii) for the null of no break vs. the null of one break.
When the p-value for i) is < .05 then I report results from the model with two breaks, and the column titled “P-value”
reports the p-value from i). When the p-value for i) is ≥ .05, I report results from the model with one break, and the
p-value is that from test ii).
All data is from the Human Mortality Database.

Appendix Table 7: Trend break estimates, Smoking of women of American women of
childbearing age, by year

Pre-trend Location Size P-value

Smoking prev., women 18-35 1.216 1955 -1.401 < .001
(percent) (.059) [1945, 1955] (.145)

This table shows the estimation results of a trend break model which allow for two possible trend breaks of unknown
location, with the listed dependent variable. It is estimated using the sequential estimation approach suggested in
Hansen (2000) for such models. I conduct bootstrap-based F-tests suggested in Hansen (2000), for i) the null of a
model with one break versus the alternative of a model with two breaks, and ii) for the null of no break vs. the null of
one break. The p-value for i) is ≥ .05, so I report results from the model with one break, and the value in the column
labelled “P-value” is the p-value from test ii). The column titled “Location” reported the estimated location of the
trend break, with 99 % confidence intervals in brackets calculated by inverting the likelihood ratio statistic. The
column titled “Size” report the magnitude of second trend breaks respectively, with standard errors in parentheses.
The column titled “Pre-trend” reports the estimated trend prior to the first break.
Based on estimates of smoking prevalence by age and year (every 5 years) from Holford et al. (2014), derived from
survey data on retrospective smoking history. I fit the trend break models to prevalence estimates for women ages
18-35.
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Appendix Table 8: Trend break estimates, Family background and childhood circumstances
of white Americans, by cohort

First break Second break
Pre-trend Location Size Location Size P-value

Share whose father has BA -0.002 1936 0.008 < .001
(.002) [1935, 1951] (.002)

Share whose mother has BA 0.003 1948 0.002 0.001
(.0003) [1935, 1965] (.0006)

Share whose father has HS diploma 0.005 1935 0.014 1955 -0.011 0.029
(.004) [1935, 1965] (.004) [1948, 1961] (.001)

Share whose mother has HS diploma 0.017 1952 -0.009 < .001
(.0006) [1945, 1959] (.001)

Father’s occupational prestige 0.154 1962 -0.151 0.103
(.012) [1935, 1965] (.068)

Mother worked while child growing up 0.010 1965 -0.011 0.073
(.0004) [1935, 1965] (.004)

Living w/ mother and father at 16 0.001 1954 -0.011 < .001
(.0004) [1949, 1958] (.0009)

Born in the US -0.001 1957 -0.002 0.022
(.0002) [1935, 1965] (.0007)

Both parents born in US 0.007 1942 -0.008 < .001
(.0008) [1938, 1951] (.001)

Mother born in the US 0.004 1944 -0.004 1956 -0.002 < .001
(Vital statistics) (0.0002) [1943, 1944] (0.0002) [1953, 1961] (0.0002)

Lived in rural/small town when 16 -0.008 1948 0.005 < .001
(.0007) [1942, 1959] (.001)

Lived in big town/suburb when 16 0.007 1949 -0.005 < .001
(.0005) [1944, 1958] (.0009)

Lived in city when 16 -0.002 1965 0.002 0.681
(.0002) [1935, 1965] (.002)

Each row shows the estimation results of a separate trend break model which allow for two possible trend breaks of unknown location, with the
listed dependent variable. All models are estimated using the sequential estimation approach suggested in Hansen (2000) for such models. The two
columns titled “Location” reported the estimated location of the first and second trend breaks, respectively, with 99 % confidence intervals in
brackets calculated by inverting the likelihood ratio statistic. The two columns titled “Size” report the magnitude of first and second trend breaks
respectively, with standard errors in parentheses. The column titled “Pre-trend” reports the estimated trend prior to the first break. I conduct
bootstrap-based F-tests suggested in Hansen (2000), for i) the null of a model with one break versus the alternative of a model with two breaks, and
ii) for the null of no break vs. the null of one break. When the p-value for i) is < .05 then I report results from the model with two breaks, and the
column titled “P-value” reports the p-value from i). When the p-value for i) is ≥ .05, I report results from the model with one break, and the
p-value is that from test ii).

With one exception, all data come from various waves of the General Social Survey. shows an estimate of the average value of the listed variable
for white Americans by year of birth, estimated from the General Social Survey. I first age-adjusted each outcome, by running a regression with
cohort fixed effects and a quartic-in-age. I then run the trend break models on these age-adjusted series by cohort (which are the estimated cohort
effects, plus the estimated age effect for age 35). See the notes to the corresponding Appendix Figures for more detail on exact GSS waves for each
variable. The data for ”Mother born in the US” come from vital statistics volumes which report the number of births in a year by parent’s nativity.
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Appendix Table 9: Trend break estimates, Wages in the United States, by year

Pre-trend Location Size P-value

Mean ln wage, men 0.035 1972 -0.037 < .001
(.001) [1971, 1973] (.002)

10th pct ln wage, men 0.047 1971 -0.058 < .001
(.002) [1970, 1971] (.0024)

Mean ln wage, women 0.030 1976 -0.013 < .001
(.001) [1971, 1979] (.002)

10th pct ln wage, women 0.056 1979 -0.040 < .001
(.002) [1977, 1982] (.004)

Mean ln wage, HS-only men 0.035 1972 -0.037 < .001
(.001) [1971, 1973] (.002)

Mean ln wage, HS-only women 0.021 1977 -0.014 < .001
(.001) [1972, 1980] (.002)

Each row shows the estimation results of a separate trend break model which allow for two possible trend breaks of
unknown location, with the listed dependent variable. All models are estimated using the sequential estimation
approach suggested in Hansen (2000) for such models. I conduct bootstrap-based F-tests suggested in Hansen
(2000), for i) the null of a model with one break versus the alternative of a model with two breaks, and ii) for the null
of no break vs. the null of one break. For all dependent variables, the p-value for i) is ≥ .05, so I report results from
the model with one break, and the value in the column labelled “P-value” is the p-value from test ii). The column
titled “Location” report the estimated location of the trend break, with 99 % confidence intervals in brackets
calculated by inverting the likelihood ratio statistic. The column titled “Size” report the magnitude of second trend
breaks respectively, with standard errors in parentheses. The column titled “Pre-trend” reports the estimated trend
prior to the first break.
I calculate each wage series from the March Annual Social and Economic Supplement of the Current Population
Survey (CPS). I then fit the trend break models to the annual time series.
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Appendix Table 10: Trend break estimates, Emissions in the United States by year

First break Second break

Pre-trend Location Size Location Size P-value

Black carbon (kt) 6.21 1949 -27.4 1961 26.018 0.001
(1.28) [1944, 1951] (2.87) [1935, 1965] (4.76)

Carbon monoxide (kt) 593 1935 2,130 1965 3,815 0.005
(503) [1935, 1940] (532) [1963, 1965] (532)

Carbon dioxide (kt) 64,555 1945 -34,990 1961 119,7063 0.030
(6089) [1936, 1965] (10024) [1957, 1964] (15223)

Ammonia (kt) 14.0 1944 36.8 1962 41.4 < .001
(1.01) [1942, 1945] (1.53) [1960, 1964] (2.52)

Non-methane volatile 114 1935 403 1965 655 < .001
organic compounds (kt) (73.5) [1935, 1940] (77.8) [1963, 1965] (77.8)

Nitrogen oxides (kt) 417 1962 702 1947 -154 0.005
(21.3) [1960, 1964] (71.0) [1938, 1958] (39.1)

Organic carbon (kt) -28.3 1943 -31.6 1935 40.9 0.025
(8.99) [1941, 1947] (4.48) [1935, 1965] (11.8)

Sulfur dioxide (kt) 628 1959 949 1943 -720 < .001
(87.1) [1952, 1963] (152) [1939, 1948] (133)

Each row shows the estimation results of a separate trend break model which allow for two possible trend breaks of
unknown location, with the listed dependent variable. All models are estimated using the sequential estimation
approach suggested in Hansen (2000) for such models. The two columns titled “Location” reported the estimated
location of the first and second trend breaks, respectively, with 99 % confidence intervals in brackets calculated by
inverting the likelihood ratio statistic. The two columns titled “Size” report the magnitude of first and second trend
breaks respectively, with standard errors in parentheses. The column titled “P-value” reports the value of a
bootstrap-based F-test suggested in Hansen (2000), for the null of a model with one break versus the alternative of a
model with two breaks. I also conduct a similar test for the null of no break vs. the null of one break, which yields
P-values < .05 for all variables.
All data is an estimate of the time series in emissions of the listed air pollutant in the United States, from the
Community Emissions Data System (O’Rourke et al.).
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